
MQTT Client Protocol (Message Queue Telemetry
Transport)
Supported device types and versions
Communication line configuration
Communication line parameters
Communication station configuration
I/O tag configuration
Literature
Document revisions

Supported device types and versions

The protocol is an implementation of the MQTT 3.1.1 standard (October 2014). MQTT protocol is a client/server protocol of a subscribe/publish type. It is
simple, has little overhead, and is easy to implement. It is used for M2M communication (Machine to Machine) and in the IoT context (Internet of Things).
D2000 KOM implements the client part of the protocol. The protocol is implemented on a TCP/IP line.
For transfer of LoRaWAN data encapsulated within the MQTT protocol, see protocol description.LoRaWan

The communication was tested/deployed against:

TheThings.Network cloud
Loriot.io cloud
Slovanet cloud ()loralink.slovanet.sk
Pixii (energy storage solution)PowerShaper
liveobjects.orange-business.com cloud

Note: communication with the cloud via websockets () was also tested. liveobjects.orange-business.com wss://liveobjects.orange-business.com:443/mqtt
The program was used as a WSS wrapper. This program started with the parameters:https://github.com/jimparis/unwebsockify.git
./unwebsockify.py --port 1883 --listen 172.16.0.1 wss://liveobjects.orange-business.com:443/mqtt
The D2000 KOM process connected to address 172.16.0.1 on port 1883. The WSS wrapper connected to the defined URL and wrapped the MQTT
communication data in a websocket envelope.

Each PUBLISH message contains a topic (Topic), data (Payload), and level of confirmation (). QoS PUBLISH messages can be sent both by the client and
 (protocol) the server. The clients at the beginning of the communication will use the SUBSCRIBE message to indicate what topics parameter of Topic Filter

 they are interested in.
The protocol defines the following levels of confirmation of PUBLISH messages - QoS (Quality of Service):

QoS_0 - PUBLISH message is not confirmed, it may be lost
QoS_1 - PUBLISH message is confirmed by the other side's PUBACK, it may be duplicated
QoS_2 - PUBLISH message is confirmed by the other side PUBREC which is then confirmed back by the PUBREL message and that one by a 's
final PUBCOMP message.

The level of confirmation of the messages sent by the D2000 KOM process is defined by the parameter protocol Publish QoS. The D2000 KOM process
considers the writing of the output tag to be successfully finished depending on the QoS:

QoS_0 - after the data is sent via the TCP connectionsuccessfully
QoS_1 - after receiving PUBACK
QoS_2 - after receiving PUBCOMP

The MQTT communication starts with the CONNECT message sent by the client (D2000 KOM). The message contains , , User Name Password and other
 and can be modified parameters, from which only Clean Session Flag Client ID (parameter is not used, as well as and , Will Flag Will QoS Will Retain

parameter is set to 0). The server replies with a CONNACK message with a return code that contains the success of the Keep Alive information about
connect operation.

Then the client sends a SUBSCRIBE message with a filter of topics (Topic Filter , specifying which topics it is interested in, and with the parameter)
required maximum level of confirmation (parameter).Subscribe QoS

The server responds with a return code that contains information about the success and maximum QoS that was assigned to the requested topics.

Then follows a phase of communication, during which both the client and the server send PUBLISH messages (the client with any topic, the server with
topics relating to the filter of topics of the received SUBSCRIBE message) and confirm them according to the value of the parameter of the received QoS
PUBLISH messages.

If the server does not send a message for longer than seconds, the client sends the PING request message, to which the server must Ping Interval
respond with the PING response message (within the time specified by the parameter). Reply Timeout
If parameters change on the line, the connection is closed and re-created.

 .The communication has been tested with the MQTT server www.TheThings.network

Communication line configuration

https://doc.ipesoft.com/pages/viewpage.action?pageId=84364017
http://Loriot.io
http://loralink.slovanet.sk/
https://www.pixii.com/pixii-powershaper-30kw-65kwh/
http://liveobjects.orange-business.com
http://liveobjects.orange-business.com
wss://liveobjects.orange-business.com:443/mqtt
https://github.com/jimparis/unwebsockify.git
wss://liveobjects.orange-business.com:443/mqtt
http://www.TheThings.network

Communication line category: .TCP/IP-TCP
Host: IP address of MQTT server (or redundant addresses separated by a comma or semicolon).
Port: the default port number is 1883 or 8883 for the encrypted SSL/TLS variant.
Line number: unused, set the value to 0.

Note: The default port for the MQTT protocol is 1883 or 8883 for the SSL/TLS version. D2000 KOM does not contain an implementation of the SSL/TLS
 protocol variant, but it is possible to configure it by using the stunnel utility http://www.stunnel.org working in a client mode (client = yes). Stunnel running

on the same computer as the D2000 KOM should listen to the 1883 local port and after connecting of D2000 KOM process to the port should encrypt the
communication using SLL/TLS and send to the target MQTT server (typically on port 8883).

: If all stations on the line are in the simulation mode or the communication is stopped for them, the line will be disconnected (the Forced disconnection
communication socket will be closed). If the simulation is disabled for at least one station and the communication is not stopped for it (the Parameters tab of
the Station type object), the line will be connected again.

Communication line parameters

Dialog - .link configuration Protocol parameters tab
They affect some optional protocol parameters. The following protocol line parameters can be entered:

Table 1

Parameter Description Unit
/
size

Default
value

Full Debug Activates detailed debug information about sending and receiving values. YES
/NO

NO

User Name User name used in a CONNECT message to connect to the MQTT server. -

Password Password used in a CONNECT message to connect to the MQTT server. -

Topic Filter The name of one topic or a multiple-topic filter sent within the SUBSCRIBE message. Using the filter the MQTT client specifies
topics, within which it wants to receive messages.
Note: topics are hierarchically sorted, a slash (/) is used as the separator, a plus (+) is used as a one-level mask, a hash (#)
character is used as a mask for multiple levels.
Examples of filter: a/b , level1/+ , # , +/+/+/up

 the change of the parameter will be reflected after restarting the communication - e.g. due to the breakdown of Note: Topic Filter
the TCP connection, as long as all stations on the line are switched off (StOff) and switched on again, or after a restart of the
KOM process. In the first two cases, the message UNSUBSCRIBE is sent to the original and then SUBSCRIBE to the Topic Filter
new (this can be important in so-called persistent sessions, when the parameter is specified and the MQTT Topic Filter Client ID
server remembers the state of the client even after the TCP connection is broken).

- #

Subscribe
QoS

The desired maximum level of validation () QoS sent within the SUBSCRIBE message.
The MQTT server can then send PUBLISH messages with such or lower levels of confirmation (but not higher). PUBLISH
messages sent by the MQTT server will be by the D2000 KOM process according to the level of specified confirmed confirmation
in them. The higher the level of , the more messages between the client and the server are exchanged (1 at QoS_0, confirmation
2 at QoS_1, and 4 at QoS_2).

QoS_0
QoS_1
QoS_2

QoS_1

Client ID Unique client identifier (Client Identifier) sent within the CONNECT message.
 it is possible to enter a blank string - in which case the server can assign a unique name to the client (if it supports such Note:

functionality) or return an error. However, if the Client ID is not specified, the parameter settings will be Clean Session Flag
ignored (as the server will assign a unique name each time).

The tested MQTT server (thethings.network) returned an error if the Client ID was blank and =NO.Clean Session Flag

Note: a specific MQTT broker (PIXII.COM) identified clients only by . In practice, this meant that two different D2000 Client ID
systems that connected to the same broker were considered as one client, and the broker closed an existing connection that it
considered old when a new connection was established. After setting the to a unique value, the communications started Client ID
to work without connection breakdowns.

-

Clean
Session Flag

Parameter Clean Session Flag of the CONNECT message. The value means that the server uses the current session state No
(connection) - e. g. after collapse and recovery of the TCP connection. This means that all unconfirmed PUBLISH messages with

are resent (optionally also QoS_0, depending on the implementation).QoS_1 and QoS_2

The Yes value means that the session is re-created and PUBLISH messages are not repeated.unconfirmed

YES
/NO

NO

Publish QoS Level of confirmation () used to send PUBLISH messages through the D2000 KOM process.QoS
Sending the PUBLISH message is the outcome of writing into the output tag with the address. The higher the OUT_VALUE
confirmation level, the more messages between the client and server are exchanged (1 for QoS_0, 2 for QoS_1, and 4 for
QoS_2).

QoS_0
QoS_1
QoS_2

QoS_0

Publish
Retain

Setting the Retain flag used when sending PUBLISH messages by the D2000 KOM process. Activating the Retain flag causes
the last message sent by the D2000 KOM process to be available on the MQTT server to other clients immediately after they are
connected, as well as after the D2000 KOM process is disconnected.

YES
/NO

NO

Ping Interval If the MQTT server did not send any message during the specified time interval, the D2000 KOM process sends a PING request
and waits for a PING response .(until time Reply Timeout)

A value of 0 turns off sending the PING request messages. The parameter allows detection of TCP connection failure.

sec 60

https://doc.ipesoft.com/pages/viewpage.action?pageId=84346442
http://www.stunnel.org
https://doc.ipesoft.com/pages/viewpage.action?pageId=84365873#ConfigurationDialogBox(D2000/CommunicationwithI/ODevices/CommunicationStations)-parametre
https://doc.ipesoft.com/pages/viewpage.action?pageId=84346399
https://doc.ipesoft.com/pages/viewpage.action?pageId=17281771#MQTTClientProtocol(MessageQueueTelemetryTransport)-qos

Payload Type The setting of message parsing:

Text only - the message is not parsed, it is assigned to the I/O tag with address IN_TOPIC
JSON - the message is parsed as JSON data. If there is an I/O tag with address , the whole message will be IN_TOPIC
assigned to it.
If there are I/O tags with addresses , they will be populated with the appropriate data from the JSON JA=json_address
message. If no such addresses exist in the message, the I/O tags will be invalidated.

Text
only
JSON

Text only

Time Field
Name

If =JSON, the name of the field with a timestamp. If the field name is not specified or the field is not found, the Payload Type
current time is assigned to the values.
For more information on the field name format, see I/O tags with addresses .JA=json_address

- -

Time Mask Mask for parsing a value in the field with a timestamp.
 from settings of depends whether the time is interpreted as local or UTC with configured offset. Note: time station parameters

Special masks are:

UNIX - the numeric value represents the number of seconds from epoch 00:00:00 01.01.1970 UTC.
UNIXMS - the numeric value represents the number of milliseconds from epoch 00:00:00.000 01.01.1970 UTC.

- yyyy-mm-
dd hh:mi:
ss.mss

Ignore
Missing Time

Ignoring a missing timestamp - if it is not present in the JSON payload, no warning will be issued. YES
/NO

NO

Will Flag Parameter Will Flag of a CONNECT message. A value of Yes means that the server will send a Last Will message to interested
parties if the connection to the D2000 KOM process is lost.

YES
/NO

NO

Will QoS The acknowledgment level () used when sending a Last Will message in the event of a loss of connection to the D2000 KOM QoS
process.

QoS_0
QoS_1
QoS_2

QoS_0

Will Retain The setting of the Retain flag used when sending a Last Will message if the connection to the D2000 KOM process is lost. YES
/NO

NO

Will Topic The topic used to send the Last Will message if the connection to the D2000 KOM process is lost. -

Will Message Contents of the Last Will report if the connection to the D2000 KOM process is lost. -

Reply
Timeout

If the MQTT server does not respond to the SUBSCRIBE, UNSUBSCRIBE, and PING requests within the required time or the
D2000 KOM process fails to read a complete message (and only part of it is read), the D2000 KOM process declares an error,
closes the connection, and opens it again. Value 0 turns off the timeout.
The parameter enables the handling of problematic behavior of the MQTT server.

sec 20

Wait Timeout A timeout of a single reading from a TCP connection. D2000 KOM repeats reading of spontaneous data times Max. Wait Retry
and if no data is read, the reading is timeouted and finished (and may be followed by a further reading or writing). By lowering
Wait Timeout and parameters, it is possible to achieve a faster response of the D2000 KOM process at Max. Wait Retry writing
the expense of a higher CPU load when the MQTT server has no data.
Note: if a lot of messages come from the MQTT server and the D2000 KOM also needs to write values, we recommend setting a
lower parameter value (e.g. 0.005 sec) so that writing is not blocked by reading (in any case, after 10 received messages, there is
an interruption during which the accumulated writes can be performed).

sec 0.100

Max. Wait
Retry

The number of repetitions of reading from TCP connection. See the description of the parameter.Wait Timeout - 3

Communication station configuration

Communication protocol " ".MQTT Client Protocol
Station address: the station address corresponds to the Topic field in the PUBLISH message received from the MQTT server. The address can
be a specific Topic, a regular expression, a character representing all Topics, or a topic representing all Topics that are not suitable for other # .*
stations. The processing priority is as follows:

If there is a station with address on the line, all messages are directed to its I/O tags and no further search is performed.#
Otherwise, all other stations on the line are searched (with the exception of the address). If the Topic matches the address of a station, .*
the message is directed to that station and no further search is performed.
Otherwise, all other stations on the line are searched (with the exception of the address), and their address is evaluated as a .* regular

. If the Topic matches the station address, the message is directed to that station and no further search is performed.expression
Stations are searched in descending order (by station address), so more specific terms go first (e.g., before)status/battery status/batt.*
Finally, if there is a station with a address, the message is addressed to it..*

Polling parameters on the tab - recommended value is Delay=0.Time parameters

I/O tag configuration

Possible value types of I/O tags: , , , .Ci Co TxtI TxtO, Qi, Ci, Co, Ai, Ao, Di, Do, TiR, ToR, TiA, ToA

Type
of I
/O
tag

Address Description

I/O tags for reading data sent by MQTT server through PUBLISH message.
 , and . Note: values of I/O tags are set by the D2000 KOM process in the order IN_TOPIC IN_DATA IN_ID It is not necessary for configuration to contain

all three I/O tags.

https://doc.ipesoft.com/pages/viewpage.action?pageId=84365873#ConfigurationDialogBox(D2000/CommunicationwithI/ODevices/CommunicationStations)-monotonny_cas
https://doc.ipesoft.com/pages/viewpage.action?pageId=17281771#MQTTClientProtocol(MessageQueueTelemetryTransport)-qos
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

TxtI IN_TOPIC Topic (Topic) of received PUBLISH message.

TxtI IN_DATA Data (Payload) of received PUBLISH message.

Ci IN_ID Identifier of a packet (Packet Identifier) of PUBLISH message that depends on the level of validation ().QoS
For messages sent with QoS_0, the identifier is zero, for QoS_1 and QoS_2, it is a positive 16-bit number.

 Note: if the MQTT server sends also messages with the QoS_0 level of validation and the ACK_ID I/O tag is
configured, then we recommend activating the option in the New value when changing time Filter tab, so that repeated
writing of the value 0 will cause a new value that differs only in a timestamp to be generated.

I/O tags for parsing JSON messages

TxtI,
TxtO,
Qi,
Ci, Co,
Ai, Ao,
Di, Do,
TiR,
ToR

JA=json_address If =JSON, the message is parsed as JSON data. The value specifies the name of the Payload Type json_address
JSON field whose value is to be assigned to the . I/O tag
For JSON messages that can be structured, the syntax ... is supported, e.g. , and if they level1.level2.level3 rx.current
contain fields (indexed from 1) also syntax ... is possible, e.g. .level1[index1].level2[index2].level3 rx.gwrx[1].time
Since the JSON message itself can be an array, the address can also start with an index, e.g. JA=[1].batt_cell_v_avg

For other examples, see the description of the LoRaWAN protocol's type s.Envelope I/O tag

I/O tag to confirm the received data to the MQTT server.

Co ACK_ID If an output I/O tag with ACK_ID address is defined, the D2000 KOM expects confirmation of the processing of each
message by writing a copy of the value of the IN_ID tag. Only after, it sets values from the next received PUBLISH

 , , and I/O message (if it was received into thein the meantime) IN_TOPIC IN_DATA IN_ID tags (in this order).
In the case of the QoS_0 level of confirmation, it is, therefore, necessary to repeatedly set the value of I/O tag ACK_ID
to 0.

 , , and I/O tags If the I/O tag ACK_ID does not exist, the values into theare written IN_TOPIC IN_DATA IN_ID immediate
ly after the PUBLISH message is received and processed.

 Note: for the messages received with the QoS_0 level of validation, no confirmation MQTT server, only is sent to the
the values of the PUBLISH message will be published. received

I/O tags for sending values to the MQTT server through PUBLISH message.
Note: .in order for the D2000 KOM process to send the PUBLISH messages to the MQTT server, both I/O tags must be defined within one station

TxtO OUT_TOPIC The topic of the PUBLISH message being sent.

TxtO OUT_VALUE Data (Payload) of the PUBLISH message being sent.
Note: sending the message is performed out as a result of writing to the OUT_VALUE I/O tag (i.e. if the Topic does not
change then it is sufficient to set the OUT_TOPIC point once - e.g. by using default value).

Literature

Links
Official website of MQTT protocol http://mqtt.org

Specifications and Standards
MQTT 3.1.1 specification http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
ISO/IEC 20922:2016 http://www.iso.org/standard/69499.html

Descriptions of Data Formats and API
www.loriot.io - Application API Data Format https://www.loriot.io/home/documentation.html#docu/app-data-format
www.thethingsnetwork.org - API Reference https://www.thethingsnetwork.org/docs/applications/mqtt/api.html

Document revisions

Ver. 1.0 - August 8th, 2017 - document creation.
Ver. 1.1 - October 15th, 2021 - support LastWill and Retain parameters
Ver. 1.2 - October 27th, 2021 - support for parsing of JSON messages
Ver. 1.3 - February 1st, 2022 - support for timestamps in JSON messages

Blog

You can read a blog about the MQTT protocol

Communication - MQTT in practice

https://doc.ipesoft.com/pages/viewpage.action?pageId=84364017#IoToverLoRaWAN/Sigfox-pt_envelope
http://mqtt.org
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.iso.org/standard/69499.html
https://www.loriot.io/home/documentation.html#docu/app-data-format
https://www.thethingsnetwork.org/docs/applications/mqtt/api.html
https://d2000.ipesoft.com/blog/communication-mqtt-in-practice

Súvisiace stránky:

Communication Protocols

https://doc.ipesoft.com/pages/viewpage.action?pageId=84345573

	MQTT Client Protocol (Message Queue Telemetry Transport)

