
Configuration of the D2Connector Process for SmartWeb
In this chapter, we will explain how to configure the connection on the D2000 application side for the Smartweb platform needs using examples. For
communication between the SmartWeb application and D2000, the JAPI library is used which communicates with the D2Connector process on the D2000
side. To make use of this chapter, we need an active D2000 application (kernel at least) to which we can connect. Connection possibilities are divided into
three categories and the possibilities from individual categories can be combined freely.

A connection can be established in two basic ways:

Connection actively follows the SmartWeb server (basic way of connecting). It is a standard method, easier for usage and debugging and can be
applied in every network in which the security policy allows it.
Connection actively follows (reverse connection). This method is used when the SmartWeb server is located in a so-called D2Connector
"demilitarized zone" (DMZ) - it is a computer network segment with which you can establish connection also from a local intranet and from outside
internet but you cannot establish any connection from DMZ outside. (Supported from the 10.1.39 version)

From the point of view of the wiretapping protection, you can establish:

Unsecured connection. Although the JAPI protocol is binary, all texts are transmitted in a readable way. An unsecured connection is good when
debugging or in the case when commConfiguration of the D2Connector Process for SmartWebunication between and rD2Connector JConnector
uns in a secure network.
Connection secured by the TLS v1.2 protocol. and communicate with each other by an encrypted protocol while sJAPI D2Connector D2Connector
hows its identity by a certificate and a private key which compares with its own certificate. (Supported from the 10.1.39 version)JConnector

From the point of view of connection to "hot" in a redundant group:kernel

D2Connector always connects to the "hot" server
D2Connector is always connected to the same regardless of whether it is "hot" or "standby server". Kernel

Parameters for Running D2Connector
D2Connector is a process of the D2000 system and it is distributed as a console application (). It accepts standard parameters of d2connector.exe
D2000 processes for running from the command line which are described in the D2000 Online Reference Help. Besides, it accepts the following
parameters of a command line:

--CONNECTOR_LISTEN_PORT=<port> - it sets the number of the TCP port on which listens for incoming connections from JAPI. D2Connector
If it is not stated differently, it will listen on the 3120 port. (The parameter will be ignored if the combination with is used)--DCC
--DCC=<hostname:port> - it switches from the listening mode to the mode of active connecting to the given address (DNS or IP) D2Connector
and to a port. It tries to establish a connection every 30 seconds until it succeeds. After ending the connection, it again tries to establish one.
--CONNECTOR_TLS_CERT=<path.crt> - it turns on the TLS security and sets the path to the file with a certificate in the .crt format.
--CONNECTOR_TLS_PK=<path.pem> - it turns on the TLS security and sets the path to the file with a private key to a certificate in the form.pem
at. Both TLS parameters have to be used together.

D2Connector establishes connection only in one way from eight possible combinations. This means that it either actively connects or listens but not both at
the same time. Similarly, it communicates either in unsecured or secured way but never in both ways at the same time. Either it is connected to one Kernel
all the time or it switches to current "hot" one. In the case that more various client applications connect to the D2000 application and these client
applications require different methods of connecting, it is necessary to run an individual instance of for each method.D2Connector

Basic Connection Method
It is an unsecured connection initiated by JAPI.

We can start without parameters and it will listen to connection on the 3120 portD2Connector

> d2connector.exe

or we can change the listening port to for example 3121:

> d2connector.exe --CONNECTOR_LISTEN_PORT=3121

Establishing a Reverse Connection
It is an unsecured connection between and the SmartWeb application located in the DMZ from which it cannot initiate the TCP connection. D2Connector
However, it can listen to upcoming TCP connection which will be initiated by .D2Connector

The client application is located on the computer and listens on the 3125 port on all of its network interfaces. We run portal.dmz.customer.com D2Con
 in the mode of connecting:nector

http://portal.dmz.customer.com

> d2connector.exe --DCC=portal.dmz.customer.com:3125

Establishing a Secure Connection
It is a connection between and secured by the TLS v1.2 protocol. The process is similar for standard and reverse connections. D2Connector JConnector
That is why the example encompasses both possibilities.

For establishing the TLS connection, it is necessary for one party to be in the role of the "TLS server" and the second party in the role of the "TLS client"
while these roles are not dependent on who initiated the TCP connection. The "TLS server" shows a certificate to which it owns a personal key. The "TLS
client" verifies the license validity and the key authenticity . For JAPI, the "TLS server" is always and the "TLS client" is always .5 D2Connector JConnector

The requirement for creating a secure connection is that we have the RSA key pair and the X.509 certificate. The certificate is stored in the file in the *.
 format and both and have to have access to its copies. The private key is stored in an unencrypted form in the file in the crt D2Connector JConnector *.
 format and only has to have access to it. Since considers trustworthy only based on showing the certificate it pem JConnector JConnector D2Connector

expected, the used certificate can be "self-signed" and it is not necessary to acquire the certificate from some certification authority.

It is necessary to run with parameters and which refer to files with a certificate and a D2Connector --CONNECTOR_TLS_CERT --CONNECTOR_TLS_PK
private key. In the example, the certificate is stored in the file and the private key in the file . According to the needs, certificate.crt private.pem
also parameters or can be used. --DCC --CONNECTOR_LISTEN_PORT

> d2connector.exe --CONNECTOR_TLS_CERT=certificate.crt --CONNECTOR_TLS_PK=private.pem

Creatinig a Certificate for Purposes of Secure Connection

For creating a "self-signed" certificate, it is possible to use for example the application OpenSSL from a command line. First, we have to create a key pair
for the RSA code. In the example, we generate a 2048 bit key pair into the file .private.pem

> openssl.exe genrsa -out private.pem 2048

To the key pair, we create a "Certificate Signing Request" request for drawing certificate that would be stored in the file . OpenSSL queries request.csr
more data which it writes into the request and which will be stated in the final certificate. However, JAPI does not examine or check this data.

> openssl.exe req -new -key private.pem -out request.csr

Then, we sign the request by a generated private key. This way, we create "selfsigned" certificate that will be located in the file . The certificate.crt
certificate will be valid for 365 days starting with the current time.

> openssl.exe x509 -req -days 365 -in request.csr -signkey private.pem -out certificate.crt

WARNING: From security reasons, it is important for the file with a certificate to be stored in such a way that no one without given very
permission could change it (it can be public for reading). It is also important that the file with a private key could be read only by very D2Connect

 and no one could change it. In a case of breaking these conditions, there is a danger of compromising the certificate's trustworthiness and or
there is a possibility of wiretapping of secured communication.

	Configuration of the D2Connector Process for SmartWeb

