
Serialization of Data between Client and API Interface

Serialization of the Unival Type
Implicit Conversion of Simple JSON Types to Unival Value
Defining of Returned Values from RPC Methods
Optimization of the Content of the Returned Unival Value
Unival type Structure ("record")
Transformations of Time Rows

Downsampling
OHLC

Both the Comet and the REST API interfaces share the same way of communication serialization using the . The only exception is calling JSON format
SBA RPC methods which serve for sending and acquiring binary data from D2000 - in this case, the data is sent in a binary form. The JSON format is a
universal format implemented almost in every programming language. Its advantage is not only native support in every browser but also easy readability
for people since it is a text format. The disadvantage of the bigger capacity of a message in comparison with any binary format is minimalized by the use of
a gzip compression implicitly supported by the REST and also the Comet API.

Serialization of the Unival Type

The basic unit of data change between a client and the D2000 system is the - clustering . The following Unival type basic object attributes in D2000
example of the unival value in the JSON format represents a value of a real number type with the .Valid state

Example of writing a Unival value

{
 "type": "real",
 "value": 123.456,
 "status": ["Valid"]
}

Every Unival value has a clearly defined type with the use of the attribute. In the case of sending Unival values into the D2000 system, the type type
attribute has to be always defined. The only exception is the possibility when we send instead of an object log of the Unival type the value directly, in our
case 123,456. This value is automatically converted to the , type by the SmartWeb server since it is a value with a decimal point (in the case of "real"
sending a string, the type would be automatically set to the value and in the case of sending an integer to the value. "text" "int"

Short notation of the Unival value

123.456

The answer from the SmartWeb server never comes in this shortened log but in the "object" log with a defined type (attribute) and a value (value type
attribute) if it is valid.

The attribute may gain the following values:type

Value of the attributetype Description of the value type

"nan" none

"bool" VBool type

"int" integer

"real" real number

"station" VStation type

"alarm" VAlarm type

"process" VProcess type

"time" integer (number of milliseconds from epoch)

"timespan" real number (number of seconds)

Other attributes are not implicitly returned in the answer form the SmartWeb server because of optimization but a client can ask for them
through a special attribute (below described). returnAs

https://en.wikipedia.org/wiki/JSON
http://doc.ipesoft.com
https://doc.ipesoft.com/display/D2DOCV21EN/Basic+Object+Attributes
https://doc.ipesoft.com/pages/viewpage.action?pageId=17279419

"text" text

"array" field of objects D2ApiValue

"qval" VQval type

"record" two-dimensional field (row, column) of values

The list of all attributes of the Unival object is in the following table:

Attribute Value type Mandatory Default
value

Note

type text yes

value according to the type no unset attributes automatically mean invalid value, set attributes mean valid value (if the attribute is
not overloaded in the status attribute)

valueTime integer (number of
milliseconds from
epoch)

no current
time

time stamp

valueTimes two-dimensional
field (row, column)
of integers (number
of milliseconds from
epoch)

no current
time

time stamps of values in a structure, only for the "record" type

alarmTime integer (number of
milliseconds from
epoch)

no time stamp of an alarm

alarmTimes two-dimensional
field (row, column)
of integers (number
of milliseconds from
epoch)

no time stamps of alarms in a structure, only for the "record" type

flags field of texts (listed
Flag type)

no no flags field of user flags, possible values are from to "A" "P"

flagsSets two-dimensional
field (row, column)
of text fields (listed
Flag type)

no no flags two-dimensional field of fields of user flags of structure values, only for the "record" type

limitStat
us

text (listed
LimitStatus type)

no "InLimit" limited state, possible values are: "InLimit", "VeryLow", "Low", "High", "VeryHigh",
"LimitsProblem"

limitStat
uses

two-dimensional
field (row, column)
of text fields (listed
LimitStatus type)

no "InLimit" two-dimensional field of limited statuses of structure values, only for the "record" type

processAl
armStatus

text (listed
ProcessAlarmStatus
type)

no "NoAlarm" status of a process alarm, possible values are: "NoAlarm", "ToOn", "ToOff", "On",
"Off", "Err", "Oscillate", "ErrCmdOn", "ErrCmdOff", "SwToTrans",
"SwToOff", "SwToOn", "SwToErr", "SwTrans", "SwOff", "SwOn", "SwErr",
"ErrZalCmdOff", "HL", "VHL", "LL", "VLL", "ToHL", "ToVHL", "ToLL",
"ToVLL", "ErrWriteCmd", "Change", "A29", "A30", "A31", "SysPrAl"

processAl
armStatus
es

two-dimensional
field (row, column)
of text fields (listed
ProcessAlarmStatus
type)

no "NoAlarm" two-dimensional field of statuses of process alarms ina structure, only for the "record" type

status text fields (listed
Status type)

no "Valid" status fields, possible values are: "Valid", "ProcAlarm", "NoAckPAlarm",
"PrAlSilent", "Weak", "NoAckValue", "Transient", "Default", "Manual",
"AlCrit", "Unknown"

statusSets two-dimensional
field (row, column)
of text fields (listed
Status type)

no "Valid" two-dimensional field of statuses of structure values, only for the "record" type

formatted
Value

text no in the attribute, the formatted value of D2000 object returns in the answer from the server,
unnecessary when calling RPC methods

structType text yes structure name, only for the "record" type, mandatory on every "record" type sent to D2000

definition D2RecordDefinition
object

- structure definition, only for the "record" type, set on every value with the "record" type returned from
D2000

returnAs text no have sense only when calling RPC methods with output parameters, defines logical name which will
have the returned output value

returnFie
lds

text fields no empty field a special attribute defines additional returning attributes required by a client from the server

returnTra
nsformati
on

ReturnTransformation
object

no null only for the "record" type with one numerical column and growing time stamps of values, it contains
the configuration of processing (downscaling) of a numerical column performed on a server before
sending answers to a client, because of the big data range, values are described below

Implicit Conversion of Simple JSON Types to Unival Value

To simplify working through the API interface, it is possible to use simple types instead of Unival type objects as input values to the D2000 system. Such
values have the validity attribute, the time of origin to the current time automatically set and other attributes gain their default value.

JSON
format
type

Corresponding
Unival type

Note

boolean "bool"

number "bool" If the target type is in the D2000 . Numbers are interpreted according to the order in the type.BOOL VBool

number "int" If the target type is in the D2000 . If the given number was a real number, it will be rounded to an integer INT
number.

number "real" If the target type is in the D2000 .REAL

number "time" If the target type is in the D2000 . Warning: The number is interpreted as a number of seconds from 1972-01-TIME
01 00:00:00 UTC, not as a number of milliseconds from the epoch.

string "text"

Defining of Returned Values from RPC Methods

The attribute returnFields defines the logical name of an output parameter required by a client from the server.

In the figure, there is represented an example of the SimpleSum method calling by a client. The first two parameters are simple JSON types that are
implicitly converted to right Unival values. The third parameter is an output one and the client defines in the attribute the logical name under returnAs
which will be the output Unival value returned; in this case, it is the logical name "vysledok".

Optimization of the Content of the Returned Unival Value

Because of the minimization of transmitted data, the Unival objects standardly contain on the output from D2000 only and attribute (if the type value
value is valid). In the case of need of other extended value attributes, which are provided by the D2000 system, it is possible to set the attrreturnFields
ibute when calling and name required attributes in it. The value of the attribute has a format of a text field. Allowed values are in the returnFields
following table.

Value in the fieldreturnFields Filled in attributes in response form server

"AlarmTime" alarmTime, alarmTimes

"Flags" flags, flagsSets

"LimitStatus" limitStatus, limitStatuses

"ProcessAlarmStatus" processAlarmStatus, processAlarmStatuses

"Status" status, statusSets

"ValueTime" valueTime, valueTimes

"FormattedValue" formattedValue

Unival type Structure ("record")

The value of the structure type has its values and attributes stored as a two-dimensional field (row, column). Values gain the type according to the
definition of structure in the D2000 system. It does not use extended attributes alarmTime, flags, limitStatus, processAlarmStatus, statu

. Instead of them, it uses attributes s a valueTime alarmTimes, flagsSets, limitStatuses, processAlarmStatuses, statusSets, val
, which are a two-dimensional field and components have the same type as the original attributes. Other attributes used only in structures are ueTimes def

and . The attribute (object) is always automatically set on all structural values that come from inition structType definition D2RecordDefinition
the D2000 system. This attribute describes columns' names and their types in a structured variable. Columns' types in a structure are a simplified version
of Unival types.

Column type Value type

"bool" VBool type

"integer" integer

"real" real number

"time" integer (number of milliseconds from epoch)

"timespan" real number (number of seconds)

"text" text

"object" according to the type of referenced D2000 object

The attribute is a text attribute and defines the name of the D2000 object of the structure definition type. It is mandatory to set it for every structType
structured value that is inputted into the D2000 system.

Príklad posielanéj hodnoty typu štruktúra - definícia SD.ArrReal_Text, 2 stpce (int, text), 3 riadky:

{
 "type": "record",
 "structType": "SD.Arr_Real_Text",
 "value": [[1, "One"], [2, "Two"], [3, "Three"]]
}

Príklad vracanej hodnoty typu štruktúra - definícia SD.ArrReal_Text, 2 stpce (int, text), 3 riadky:

{
 "type": "record",
 "definition": {
 "columnTypes": ["integer", "text"],
 "columnNames": ["digit", "name"]
 },
 "value": [[1, "One"], [2, "Two"], [3, "Three"]]
}

Transformations of Time Rows

Time row is a one-column structure in which values are real numbers and have increasing time stamps set. When displaying time rows, all values from
requested interval are often not necessary or required (especially because of performance). For such needs, transformations of time rows are
implemented which decrease the number of transmitted data. It is possible to request the transformation by setting the attribute on the transformation
output structured value.

Downsampling

Downsampling is reducing the number of values according to the given step or to the given number of values. The used algorithm tries as much as
possible to keep the course of the curve of the original time row and does not smooth the final curve as the common resampling using averaging.

Vyžiadané zredukovanie algoritmom Largest Triangle Three Buckets na 100 hodnôt

{
 "type": "record",
 "structType": "SD.Arr_Real",
 "returnTransformation": {
 "type": "lttb",
 "threshold": 100
 }
}

Vyžiadané zredukovanie algoritmom Largest Triangle Three Buckets s krokom 86400 sekúnd (1 de)

{
 "type": "record",
 "structType": "SD.Arr_Real",
 "returnTransformation": {
 "type": "lttb",
 "step": 86400
 }
}

OHLC

The OHLC (Open-High-Low-Close) algorithm transforms the output time row in a way that for every interval it finds first, maximal, minimal and last value.
Optionally when using this algorithm, it is possible to set whether the intervals should be continuous (successive intervals have the first and the last value
common - by default) or discrete - the attribute and where should be the time stamp of the value representing the whole interval placed (the discrete
beginning "Start" or in the middle "Midpoint" - by default) - the attribute. timestampPlacement

Vyžiadané OHLC transformácie s krokom 86400 sekúnd (1 de) s diskrétnymi intervalmi a asovými znakami na zaiatku intervalu

{
 "type": "record",
 "structType": "SD.Arr_Real",
 "returnTransformation": {
 "type": "ohlc",
 "step": 86400,
 "discrete": true,
 "timestampPlacement": "Start"
 }
}

	Serialization of Data between Client and API Interface

