
MODBUS Client
MODBUS Client communication protocol
Supported device types and versions
Communication line configuration
Line protocol parameters
Station configuration
I/O tag configuration
Note to FloBoss 103 device
Note to Honeywell
Literature
Changes and modifications
Document revisions

Supported device types and versions

The protocol executes client (master) communication with arbitrary devices which supports a standard MODBUS RTU and ASCII in the versions of serial
communication as well as MODBUS over TCP/IP. Moreover, it supports two extensions:

Byte mode - allows working with devices that get back the values of registers as 1 byte (in contrast with Modbus standard in which the register
value is 2 bytes).
Variable mode - allows working with devices that get back values of registers with different sizes than standard 2 bytes. It was implemented
because of support the flowmeter FloBoss 103 made by Fisher Controls International (at this time a part of Emerson Process Management): 1-
byte variables, 4-byte unsigned/signed integers, text strings of length 10,12,20,40 characters, 6-byte time stamp, and other.

Communication line configuration

Line category (serial communication)Serial
Line category (serial communication).SerialOverUDP Device Redundant
Line category (serial communication).RFC2217 Client
Line category and (MODBUS over TCP/IP). Reserved TCP port 502 is used in common, but it is possible to TCP/IP-TCP TCP/IP-TCP Redundant
use any other one according to the setting of the device. The line number is not used, set the value e.g. to 1.
Note: For redundant systems, it is possible to enter multiple names addresses separated by commas.
Note: In the case of WAGO 750-8100 type PLC and communication via MODBUS TCP, it was necessary to set a small polling period (e.g. 1
second) in the time parameters of the station. In the case of a longer period (5 seconds), the connection was closed quite often by the PLC.

Line protocol parameters

A dialog window of - tab.communication line configuration Protocol parameters
They influence some optional protocol parameters.

The line protocol contains the following parameters:

Parameter Meaning Unit Default
value

Immediate
Disconnect

The parameter is implemented only for and line categories. The parameter activates the TCP/IP-TCP TCP/IP-TCP Redundant
disconnection of the TCP connection after the execution of each read cycle, or after the value is written. The parameter was
implemented due to problems with connection stability on mobile GPRS networks.

YES
/NO

NO

Tcp No Delay Setting parameter to YES causes low-level socket option TCP_NODELAY being set, thus turning off the default Tcp No Delay
packet coalesce feature.
The parameter is implemented only for and line categories.TCP/IP-TCP TCP/IP-TCP Redundant

YES
/NO

NO

Station configuration

Communication protocol " ".Modbus Client
The station address is a decimal number mostly in the range of 1 up to 247. Address 0 is reserved as broadcast.

Station protocol parameters

Configuration dialog box - tab .Parameter
They influence some optional parameters of the protocol. The following station protocol parameters can be set:

Table 1

https://doc.ipesoft.com/display/D2DOCV12EN/Serial+and+Serial+Line+Redundant
https://doc.ipesoft.com/display/D2DOCV12EN/SerialOverUDP+Device+Redundant+and+SerialOverUDP+Line+Redundant
https://doc.ipesoft.com/display/D2DOCV12EN/RFC2217+Client
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282396
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282396
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282564
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282396
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282396
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282396
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282396
https://doc.ipesoft.com/pages/viewpage.action?pageId=17282378#ConfigurationDialogBox(D2000/CommunicationwithI/ODevices/CommunicationStations)-parametre

Parameter Meaning Unit Default
value

Retry Count Maximum count of request retries. If no reply returns after a request had been sent, the station will be in the status of a
communication error.

s 2

Retry
Timeout

Timeout before resending a request if no reply had not received. s 0.1

Wait First
Timeout

Delay after sending the request before reading the response. s 0.1

Wait Timeout Timeout between reading the reply. s 0.1

Max. Wait
Retry

The maximum number of retries of the reply reading. - 20

Start Silent
Interval

"Start silent interval" before the beginning of the transmission in RTU mode. ms 50

Stop Silent
Interval

"Stop silent interval" after ending of the transmission in RTU mode. ms 50

Little Endian
Mode

Byte order in Little-endian mode for 4-byte variables. The individual options indicate in which bytes (1-lowest, 4-highest) the
individual bytes from the communication will go:

2143 - first the lower word is received, then the higher word (higher byte within the word is always first)
3412 - first the higher word is received, then the lower word (lower byte within the word is always first)
1234 - bytes are received from lowest to highest (direct opposite of big-endian)

- 2143

Byte mode Special byte mode of transmission in which the values of registers have a length of 1 byte and not 2 bytes as it is defined in Modbu
.s protocol specification

YES
/NO

NO

Variable
mode

Special variable mode of transmission in which the values of registers have variable lengths.
The setting of :Variable mode
Little endian = the lowest bytes are sent first
Big endian = the highest bytes are sent first
OFF = variable mode is switched off

Note 1: Variable and byte mode are incompatible and only one of them can be enabled.
 Emerson FloBoss 103 device: text strings and time stamps of 6-byte are sent always from the lowest byte.Note 2:
 Variable mode is implemented only for Protocol Mode=Note 3: RTU.

: A data encoding is used automatically, according to the default parameter values and Note 4 big-endian Byte mod=NO Variable
 (i.e. according to).mode=OFF MODBUS protocol specification

OFF
Little
endian
Big
endian

OFF

Full debug Logging of detailed debug information about communication in the line log. YES
/NO

NO

Protocol
mode

Protocol mode: or .RTU ASCII

Note: In the case of "MODBUS over TCP/IP", the parameter value is ignored and Protocol Mode= is used.RTU

RTU
ASCII

RTU

Addressing
model

Sets an address model of MODBUS protocol:
 data are addressed from up to .MODBUS PDU 0 65535

 data are addressed from up to .MODBUS data Model 1 65536

 is a default value. If the is set, the object with the address X is addressed as X-1 in Note: MODBUS PDU MODBUS data Model M
.ODBUS PDU

After you change this parameter, restart a proper communication process.

MODB
US
PDU
MODB
US
data
Model

MODBUS
PDU

TCP/IP
protocol
variant

Select a variant of the protocol in case of TCP/IP communication:
 is a variant of communication without control checksum. Safeguarding is done by the underlying TCP protocol."MODBUS TCP"

 is a variant where a payload is MODBUS RTU data containing a checksum."MODBUS over TCP"

"MOD
BUS
TCP"
"MOD
BUS
over
TCP"

"MODBUS
TCP"

Max.
Registers

Maximum count of registers that are read by one request. - 100

Max. Bytes Maximum count of bytes that are required by one request (only in "Byte mode"). - 100

Skip
Unconfigured

To read the values from addresses that are not configured is not allowed.
Description and example:
The requests for data, which are limited by protocol parameter "Max. Registers" or "Max. Bytes", are sent as standard. If I/O tags
with addresses "Holding Registers" 1, 2, and 5 have been configured, one request reading 5 registers starting with the address 1
is sent although the I/O tags with addresses 3 and 4 are not configured. It is more efficient to obtain the required data by one
request than by two ones even if the unnecessary data are also read.
If the parameter "Skip Unconfigured" is set on YES, two requests are sent, the first one reads two registers from address 1 and
the second one reads one register from address 5.

YES
/NO

NO

Check
Receive
Length

If this parameter is set to YES, then an extra check is performed when receiving a response to a read request: the length of
received data is checked whether it matches the number of registers in a read request:

if Byte mode is on (=YES), the length of received data must equal to the number of registersByte mode
if both Byte mode and variable mode are off, the length of received data must equal to double of the number of registers
if the variable mode is on (=little-endian or big-endian), check has not been implemented yetVariable mode

This extra check is reasonable on high-latency and variable-latency lines - e.g. GPRS networks - to detect and avoid the situation
when read request (#1) is repeated due to timeouts and then two responses are received, the second of which could be
considered to be an answer to another read request (#2), thus causing wrong values being assigned to I/O tags addressed by this
read request #2.

YES
/NO

NO

I/O tag configuration

Possible types of I/O tag values for invariable mode: , , , , , .Ai Ao Di Do Ci Co, TxtI

Possible types of I/O tag values for variable mode: , , , , , , , , .Ai Ao Di Do Ci Cout TxtI TxtO TiA

I/O tag address:

The main address space in the protocol MODBUS is divided into the following registers:

Coils type (reading/writing)
Discrete Inputs (reading)
Holding Registers (reading/writing)
Input Registers (reading)

Independent addressing with the address size of 2 bytes, i.e. addresses from 0 up to 65535 (so-called addressing model), is in an address MODBUS PDU
space of each type of register. Some devices work with address space starting with 1 (so-called). In this case, it is necessary to MODBUS Data Model
deduct 1 in the address at configuration I/O tags in the D2000 system or change the setting of the parameter to the Addressing model MODBUS data

.Model

I/O tag address can be in a or format (for a variable mode).basic extended

Basic format of I/O tag address:
Address format is in which:[I|U|Uu|Ul|f|F|L|Ll|S|Sl|B|X|sn.|an][d][b][s]RdFn[-WrFn[d]].Address[.BitNr] .|An. |D

First character defines a type of I/O tag:
I - Integer16 (default) - one register is read, signed
U - Unsigned16 - one register is read, unsigned
Uu - Unsigned16 - one register is read, unsigned, only upper byte is considered (1st in sequence)
Ul - Unsigned16 - one register is read, unsigned, only lower byte is considered (2nd in sequence)
f - Float (4 bytes = 2 registers) - two registers with and are read and transmitted as big-endian (see).Address Address+1 Note
F - Float (4 bytes = 2 registers) - two registers with and are read and transmitted as little-endian (so-called Modicon Address Address+1
format), (see)Note
L - Unsigned long (4 bytes = 2 registers) - two registers with and are read, unsigned, and transmitted as big-endian Address Address+1
(see)Note
Ll - Unsigned long (4 bytes = 2 registers) - two registers with and are read and transmitted as little-endian, unsigned Address Address+1
(see)Note
S - Signed long (4 bytes = 2 registers) - two registers with and are read, signed, and transmitted as big-endian (see Address Address+1

)Note
Sl - Signed long (4 bytes = 2 registers) - two registers with and are read and transmitted as little-endian, signed (see Address Address+1

)Note
B - Byte unsigned, only the upper 8 bits of the register value
X - Byte unsigned, only the lower 8 bits of the register value
sn. - Text string with the length of characters, one register is one character, registers with up to are readn n Address Address+n-1
an. - Text string with the length of characters, one register is two ASCII characters, characters are transmitted in the same order as 2*n
they appear in the string, registers with up to are readn Address Address+n-1
An. - Text string with the length of characters, one register is two ASCII characters, characters are transmitted in big-endian order (i.e2*n

), registers with up to are read. "1234" is transmitted as "2143" n Address Address+n-1
Modifier indicates that a number is an 8-byte number (4 consecutive registers). It can be used for types , , , , , and it is used for d L Ll S Sl F f,
configuration of signed/unsigned 8-byte integer as well as an 8-byte float (big-endian).<B8>..<B1> and little-endian <B1>..<B8> formats
Modifier D indicates that a number is an 8-byte number (4 consecutive registers). It can be used for types Ll, Sl, F and it is used for configuration
of signed/unsigned 8-byte integer as well as an 8-byte float (little-endian). format <B2><B1><B4><B3><B6><B5><B8><B7>
Note: when using a modifiers , the I/O tag must be of Analog type (Ai), because Integer type (Ci) in D2000 is implemented as a 4-byte or d D
variable and overflow might occur. Writing of Integer type (Co) as an 8-byte number is supported.
Modifier indicates that figure is coded by BCD. It can be used for I/O tags of , , types.b I U B, L, Ll
Modifier indicates that a status register (Unsigned16) located on address is followed by a big-endian Float value located on address s Address Ad

 .. . This indicator is used for type and it is implemented for calorimeter Endress+Hauser RMS621. The following table shows dress+1 Address+2 f
the values of the status register and their mapping to D2000 attributes.

Status register D2000 attributes

0 : Invalid value Weak

1 : Measured value valid Valid

2 : Overflow warning
3 : Overflow error
4 : Underflow warning
5 : Underflow error
6 : Saturated steam alarm
7 : Error in differential pressure calculation
8 : Wrong medium for DP calculation
9 : Wrong value range - DP calculation inaccurate
10 : Differential pressure - general error
11 : Range overshoot (Tsat > 350 etc.) on
12 : Change in state of aggregation
26 : Differential pressure --> general error
99 : No measured value is assigned to the register in the setup of the ModBus

Weak

Parameter is a function of the Modbus protocol for a data reading. The following functions are implemented:RdFn
1 - Read Coils: binary status reading
2 - Read Discrete Inputs: binary input reading
3 - Read Holding Registers: status register reading (Integer16/Unsigned16 and Float32 - reads two successive registers)
4 - Read Input Registers: input register reading (Integer16/Unsigned16 and Float32 - reads two successive registers)
0 - A value is not read, it is only written. The function for writing (WrFn) must be set.

Parameter is the function of the Modbus protocol for data writing. The following functions are implemented:WrFn
5 - Write Single Coil: binary status writing (default for)Read Coils
6 - Write Single Register: status register writing (default for)Read Holding Registers
16 - Write Multiple registers: multiple registers writing, it must be used when 2-register type is written (e.g. Float, Unsigned long, etc.).

 function can be used to write more than two registers at once if a text string is used. Example:Note:
if we have an I/O tag with address a3.0-16.#8A00 (i.e. text string covering 3 registers, having length of 6 characters) and we write a
string '123456', then hexadecimal values 0x3132, 0x3334 and 0x3536 (ASCII code for '1' is 0x31, for '2' is 0x32 etc) will be written to
registers 0x8A00, 0x8A01 and 0x8A02.
22 - Mask Write Register: write affects only the value of the particular bit of the status register. It is usable only for value types BitNr Do
with the address parameter .BitNr

Parameter activates the function "delayed write". Sending of the value is delayed until the request to write the value of the object without d
parameter comes. All accumulated requests waiting to be written are sent. If the function is set to "Write Multiple Registers", the values d WrFn
are sent in one packet.
Parameter is a 2-byte address of register (0-65536). See also the protocol parameter .Address Addressing model
Note: address can be specified as a hexadecimal number using a number sign (#), e.g. #50CE
Parameter is a number of bit in a word. The values 0-7 are allowed to be used for binary statuses and inputs, values 0-15 are allowed to be BitNr
used for reading of bit from 16-bit status or input registers.

Note about the byte and register order

1. MODBUS protocol uses the big-endian, i.e. the most significant byte (MSB) is transmitted as first. Examples:

Received bytes of MSB-LSB I/O tag type Value

0x00 0x01 I, U 1

0xFF 0xFE I -2

0xFF 0xFE U 65534

0x01 0x02 B 1

0x01 0x02 X 2

2. When values are read from two registers as big-endian the received bytes are analysed in this way:

Most significant register (ADR address) Least significant register (ADR+1 address)

MSB LSB MSB LSB

Examples:

Received bytes of register (MSB-LSB) Received bytes of register + 1 (MSB-LSB) I/O tag type Value

0x00 0x00 0x00 0x01 L, S 1

0xFF 0xFF 0xFF 0xFE S -2

0x00 0x01 0x00 0x02 L, S 65538

0x3F 0x80 0x00 0x00 f 1.0

0xC0 0x00 0x00 0x00 f -2.0

3. When values are read from two registers as little-endian the received bytes are analysed in this way (if):Little Endian Mode=2143

Least significant register (ADR address) Most significant register (ADR+1 address)

MSB LSB MSB LSB

Examples:

Received bytes of register (MSB-LSB) Received bytes of register + 1 (MSB-LSB) I/O tag type Value

0x00 0x01 0x00 0x00 Ll, Sl 1

0xFF 0xFE 0xFF 0xFF Sl -2

0x00 0x02 0x00 0x01 Ll, Sl 65538

0x00 0x00 0x3F 0x80 F 1.0

0x00 0x00 0xC0 0x00 F -2.0

Example of configuration:

1.10 - the function reads the binary status value with address 10.Read Coils
3.1 - a signed 16-bit number, it is read by the function from the address 1 (it can be also in the form).Read Holding Registers I3.1
U3.1 - an unsigned 16-bit number that is read by the function from address 1.Read Holding Registers
I3-6.1000 - signed 16-bit number that is read by the function from address 1000 and written by the function Read Holding Registers Write Single

 (as this function is the default, the address could be also .Register I3.1000)
S3.321 - a signed 32-bit number, it is read by the function from the registers 321 and 322.Read Holding Registers
B1.20.0 - a bit that is read by function from address 20 as 0-bit in a byte.Read Coils
s10.3.123 - a text string, length 10 characters (2 bytes per character), it is read by the function from the address 123.Read Holding Registers
a5.3.123 - a text string, length 10 characters (1 byte per character), it is read by the function from the address 123.Read Holding Registers
U0-6.456 - an unsigned 16-bit number, is written to the register 456, it is written by , a register reading is not performed.Write Single Register

Extended format of I/O tag address:

Address format is in which:[xN][I|U|F|B|C|T][b]RdFn[-WrFn].Address[.BitNr]

xN indicates the number of bytes that read or write. Valid values for N are 1, 2, 4 (in combination with), 6 for type, and an arbitrary I, U, F T
number for type.C
A letter defines the type of I/O tag. Besides standard two extra types have been added:I, U, F, B,

C - text string of fixed length (e.g. x10.C3.1001 is a 10-character string on address 1001)
T - time stamp with length of 6 bytes (ss:mi:hh dd:mm:yy)

The meaning of other parameters is in compliance with the standard mode.

See the example of the configuration in the .next section

Note to FloBoss 103 device

configuration software ROCLINK800
default login LOI, password 1000
logging in FloBoss 103: click on DirectConnect (connection through COM1, on the side of FloBoss 103 it is connected to LOI-local interface)
menu Configure->Modbus->Configuration
set the parameter "Variable Mode" on station in D2000 according to setting "Byte Order":

if "Least Significant Byte first" then "Little endian"
if "Most Significant Byte first" then "Big endian"

I/O tags are configured through menu on FloBoss 103Configure -> Modbus -> Registers
following types are supported (means 16-bit address):n

Binary input:
address in D2000: 1. , e.g. 1.1001, variable of Di/Dout typen
address in FloBoss 103: variable of typeBIN
Function: 1
Starting/ending register: n

Binary output:
address in D2000: 1. , e.g. 1.1001, variable of Dout typen
address in FloBoss 103: variable of BIN r/w
Function: 1 (for reading)
Starting/ending register: n
Function: 5 (for reading)
Starting/ending register: n

Unsigned Int 8 bits input:
address in D2000: x1.B3. , e.g. x1.B3.1003, variable of Ci/Co typen

address in FloBoss 103: variable of typeUINT8
Function: 3A or 3B
Starting/ending register: n

Unsigned Int 8 bits output:
address in D2000: x1.B3. , e.g. x1.B3.1003, variable of Co typen
address in FloBoss 103: variable of typeUINT8 r/w
Function: 3A or 3B
Starting/ending register: n
Function: 6
Starting/ending register: n

Unsigned Int 16 bits input:
address in D2000: x2.U3. , e.g. x2.U3.1004, variable of Ci/Co typen
address in FloBoss 103: variable of typeUINT16
Function: 3A or 3B
Starting/ending register: n

Unsigned Int 16 bits output:
address in D2000: x2.U3. , e.g. x2.U3.1004, variable of Co typen
address in FloBoss 103: variable of typeUINT16 r/w
Function: 3A or 3B
Starting/ending register: n
Function: 6
Starting/ending register: n

Signed Int 16 bits input:
address in D2000: x2.I3. , e.g. x2.I3.1005, variable of Ci/Co typen
address in FloBoss 103: variable typeINT16
Function: 3A or 3B
Starting/ending register: n

Signed Int 16 bits output:
address in D2000: x2.I3. , e.g. x2.I3.1005, variable of Co typen
address in FloBoss 103: variable of typeINT16 r/w
Function: 3A or 3B
Starting/ending register: n
Function: 6
Starting/ending register: n

Unsigned Int 32 bits input:
address in D2000: x4.U3. , e.g. x4.U3.1006, variable of Ci/Co typen
address in FloBoss 103: variable of typeUINT32
Function: 3A or 3B
Starting/ending register: n

Unsigned Int 32 bits output:
address in D2000: x4.U3. , e.g. x4.U3.1006, variable of Co typen
address in FloBoss 103: variable of typeUINT32 r/w
Function: 3A or 3B
Starting/ending register: n
Function: 6
Starting/ending register: n

Float 32 bits input:
address in D2000: x4.F3. , e.g. x4.F3.1008, variable of Ai/Ao typen
address in FloBoss 103: variable of typeFL
Function: 3A or 3B
Starting/ending register: n

Float 32 bits output:
address in D2000: x4.F3. , e.g. x4.F3.1008, variable of Co typen
address in FloBoss 103: variable of typeFL r/w
Function: 3A or 3B
Starting/ending register: n
Function: 6
Starting/ending register: n

String (N bytes) input:
address in D2000: x1N.C3. , e.g. x10.C3.1010, variable of TxtI/TxtO typen
address in FloBoss 103: variable of m() typeAC AC10,AC12,AC20,AC30,AC40
Function: 3A or 3B
Starting/ending register: n

String (N bytes) output:
address in D2000: xN.C3. , e.g. x10.C3.1010, variable of Co typen
address in FloBoss 103: variable of N r/w type ()AC AC10,AC12,AC20,AC30,AC40
Function: 3A or 3B
Starting/ending register: n
Function: 6
Starting/ending register: n

Time and date 6 bytes input:
address in D2000: x6.T3. , e.g. x6.T3.1010, variable of TiA/TxtI typen
address in FloBoss 103: variable of typeDT6
Function: 3A or 3B
Starting/ending register: n
Note 1: FloBoss 103 supports local and monotonous time - that is why the configuration of station in D2000 must correspond to
configuration of FloBoss.
Note 2: It is possible to set time and date but it requires to configure extra the I/O tags for a second, minute, hour, day, month,
and year as and after that to write into them.Unsigned Int 8 bits

Note on Honeywell controllers

The basic parameters and current data of these controllers are not normally read by means of functions 0x01 up to 0x04. It is necessary to use the function
0x14/0x15 Read/write configuration reference data. These controllers use "big-endian" byte order. Therefore, for proper functionality, it is not necessary to
modify parameters that change byte mode and endianness.

Examples of I/O tag configuration:

20.039 - 16-bit number from address 39(0x27)
f20.040 - 32-bit real number from address 40(0x28)

Literature

MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b, December 28, 2006. http://www.modbus.org

Changes and modifications

-

Document revisions

Ver. 1.0 - November 27th, 2006 - document creating.
Ver. 1.1 - November 21st, 2007 - document update.
Ver. 1.2 - April 24th, 2009 - document update.
Ver. 1.3 - November 3rd, 2010 - document update.
Ver. 1.4 - December 6th, 2010 - document update.

Blog

You can read sblog about Modbus protocol:

Communication – Modbus protocol
Communication - Modbus in practice

Related pages:

Communication protocols

http://www.Modbus-IDA.org
https://d2000.ipesoft.com/blog/communication-modbus-protocol
https://d2000.ipesoft.com/blog/communication-modbus-in-practice
https://doc.ipesoft.com/display/D2DOCV12EN/Communication+Protocols

	MODBUS Client

