
1.  
2.  

3.  

Transfer of data containers
Data container (internal data structure) is an internal data structure that enables to save both simple and structured values according to a key.
The owner of a container is always one running instance of the script. It can be shared between various scripts and processes.

Data container may be created by the actions  (a spare container), or . The second type is filled with pages CNT_CREATE GETARCHARR_TO_CNT
containing data read from the archive.
The first access to the archive is more effective (memory consumption and partly speed) than using GETARCHARR action. Data container created by 
GETARCHARR_TO_CNT action can use only the actions ,  and  ( ).CNT_GETNR CNT_FIND CNT_DESTROY example

The container has a unique identifier. The container is automatically terminated by terminating the script, to which it belongs, or by executing the CNT_DES
action.TROY 

The size of a container is not specified and is only limited by the operating memory size.

Each value included in a container is uniquely determined by the so-called .key
Users can insert, find, read and delete values into/from the container. The type of values to be inserted into the container is optional ( , , , , Int Bool Text Real T

) or structures (entire structured variable, row, ...). The value type of the key must be one of , , ,  or , but all keys in the container ime Int Bool Text Real, Time
must be the same type.

The actions that ensure work with the data container are stated on page .Script actions

Transferring data container between running ESL scripts

A container transfer can be done by RPC procedures. In the declaration for the RPC procedure, you have to tag the parameter that represents the handle 
to the container by . An algorithm is contingent on the existence of data containers.  If the handle to the data container is an invalid value or CNT_HANDLE
points to a non-existent data container, the algorithm ends with an error
The value of  local variables is an integer (INT).CNT_HANDLE

RPC procedure declaration:

  RPC PROCEDURE ProcName [([IN]  CNT_HANDLE paramName1[,paramName2, ...] [IN]  CNT_HANDLE paramName3]...)] 

 ;actions
 
 END ProcName 

Notes:

The owner of the data container can be only one ESL script, which also ensures the canceling of the data container.
Data containers can be transferred also between ESL scripts that belong to different processes. In this method, all data that are placed in the 
container are transferred.
When calling the RPC procedure, if you use the value that is not the handle on the place for a formal parameter of CNT_HANDLE type, the ESL 
script will search the data container according to an input value.

If a data container, tagged by input value, , the script  it.exists transfers
If a data container, tagged by input value,  exist, the script  an error - container with handle = x not found (there are does not displays
not any data 22). 

 INT _cnt_handle
 
 __cnt_handle := 5
 
 CALL [objIdent] CNT (_cnt_handle) ON procIdent

If the input value, representing handle, is invalid, the calling Esl script ends with RunTime error.
If the calling RPC procedure is , the container is terminated in this script. Then ESL script that has been called becomes the owner asynchronous
of this container:

https://doc.ipesoft.com/display/D2DOCV23EN/CNT_CREATE
https://doc.ipesoft.com/display/D2DOCV23EN/GETARCHARR_TO_CNT
https://doc.ipesoft.com/display/D2DOCV23EN/CNT_GETNR
https://doc.ipesoft.com/display/D2DOCV23EN/CNT_FIND
https://doc.ipesoft.com/display/D2DOCV23EN/CNT_DESTROY
https://doc.ipesoft.com/display/D2DOCV23EN/GETARCHARR_TO_CNT
https://doc.ipesoft.com/display/D2DOCV23EN/Script+Actions#ScriptActions-akcie_kontajner


1.  

2.  

 ******************
 
 ; ESL script that is called
 RPC PROCEDURE InsertToContainer(CNT_HANDLE _handle)
 .....
 END InsertToContainer
 
 ***************
 
 
  ; ESL script that is calling
 INT _cnt_handle
 
 CALL[...] InsertToContainer(_cnt_handle) ASYNC ON
 ....
 ; the container is terminated in this script, the owner is the called ESL script
 
 ******************

If the calling RPC procedure is , there are two options:synchronous
If the formal parameter, which represents CNT_HANDLE, is tagged by the keyword IN, when calling the RPC procedure, the ESL script 
containing the declaration of called RPC procedure will be  the owner of the data container.permanently

 ******************
 ; ESL script that is called
 RPC PROCEDURE InsertToContainer(IN CNT_HANDLE _handle)
 .....
 END InsertToContainer
 ***************
 

 ; ESL script that is calling
 INT _cnt_handle
 
 CALL[...] InsertToContainer(_cnt_handle) ON ....
 ; after this calling the data container is terminated, the owner is the called ESL script
 *************** 

If the formal parameter, which represents CNT_HANDLE, is not tagged by the keyword IN, when calling RPC procedure, ESL script 
containing the declaration of called RPC procedure will be the  owner of data container. After finishing the called RPC temporal
procedure, the script, from which the RPC procedure has been called, will become the owner. 

 *******************
 ; ESL script that is called
 RPC PROCEDURE InsertToContainer(CNT_HANDLE _handle)
 .....
 END InsertToContainer
 ***************
 
 
 ; ESL script that is calling
 INT _cnt_handle
 
 CALL[...] InsertToContainer(_cnt_handle) ON ....
 ; after this calling, the owner of data container is still ESL script that is calling
 *************** 

Example 1:



 INT _INTER_HANDLE
 
 RPC PROCEDURE MakeWithCNT_IN (IN CNT_HANDLE _CNT_Handle, BOOL _bOk) 
 
 INT _iKey 
 INT _value
 BOOL _bFound
 
  _iKey := 1
  _INTER_HANDLE := _CNT_Handle
  CNT_FIND _INTER_HANDLE, _iKey, _value, _bFound
 
  IF _bFound THEN
  _value := 3
  CNT_INSERT _INTER_HANDLE, _iKey, _value 
 ENDIF
 
 END MakeWithCNT_IN
 
 RPC PROCEDURE MakeWithCNT_IN_OUT (CNT_HANDLE _CNT_Handle, BOOL _bOk)
 
 INT _iKey 
 INT _value
 BOOL _bFound 
 
  _iKey := 1
  _INTER_HANDLE := _CNT_Handle
  CNT_FIND _INTER_HANDLE, _iKey, _value, _bFound
 
  IF _bFound THEN
  _value := 3
  CNT_INSERT _INTER_HANDLE, _iKey, _value
  ENDIF
 
 END MakeWithCNT_IN_OUT 

Example 2:



 INT _Handle
 
 PROCEDURE Interny_call(BOOL _bOk)
 INT _iKey 
 INT _value
 BOOL _bFound 
 
 _bOk := @TRUE
 _iKey := 1
 
 ;*****************************************************************************
 ;** it transfers cnt into other script and changes value 1 to 3 in the key
 ;** 
 ;*****************************************************************************
 
 CALL [E.1] MakeWithCNT_IN_OUT(_Handle,_bOk) ON SELF.EVH 
 
 IF !_bOk THEN
 RETURN
  ENDIF
 
 CNT_FIND _Handle, _iKey, _value, _bFind
 
 _bOk := _bFind & _value = 3
 
 ;*****************************************************************************
 ;** it transfers cnt into other script, this script discards the cnt
 ;**
 ;*****************************************************************************
 
 CALL [E.1] MakeWithCNT_IN(_Handle, _bOk) ON SELF.EVH
 END Interny_call
 
 BEGIN
 
 INT _iKey 
 INT _value
 
  _iKey := 1
 _value := 2
 CNT_CREATE _Handle
 CNT_INSERT _Handle, _iKey, _value
 
 END 

Related pages:

Script actions

https://doc.ipesoft.com/display/D2DOCV23EN/Script+Actions

	Transfer of data containers

