Porovnávané verzie

Kľúč

  • Tento riadok sa pridal
  • Riadok je odstránený.
  • Formátovanie sa zmenilo.

...

The protocol implements client (master) communication with arbitrary devices which supports support MODBUS RTU or MODBUS ASCII standards (serial communication) as well as MODBUS over TCP/IP. Moreover, it supports two extensions:

  • Byte mode - allows working with devices that implement the registers as 1-byte variables (in contrast with Modbus standard in which the register value is 2 bytes).
  • Variable mode - allows working with devices that implement the registers with different sizes than standard 2 bytes. It was implemented because of support of the flowmeter FloBoss 103 made by Fisher Controls International (at this time a part of Emerson Process Management): 1-byte variables, 4-byte unsigned/signed integers, text strings of length 10,12,20,40 characters, a 6-byte time stamp, and other.

...

ParameterMeaningUnitDefault value

Kotva
id
id
Immediate Disconnect

The parameter is implemented only for TCP/IP-TCP and TCP/IP-TCP Redundant line categories. The parameter activates the disconnection of the TCP connection after the execution of each read cycle, or after the value is written. The parameter was implemented due to problems with connection stability on mobile GPRS networks.YES/NONO

Kotva
tnd
tnd
Tcp No Delay

Setting Tcp No Delay parameter to YES causes low-level socket option TCP_NODELAY being to be set, thus turning off the default packet coalesce feature.
The parameter is implemented only for TCP/IP-TCP and TCP/IP-TCP Redundant line categories.
YES/NONO

...

ParameterMeaningUnitDefault value
Kotva
rc
rc
Retry Count
Maximum count of request retries. If no response returns after a request had been sent, the station's status will change to a communication error.-2
Kotva
rt
rt
Retry Timeout
Timeout before resending a request if no response has been received.s0.1
Kotva
wft
wft
Wait First Timeout
The delay after sending the request and before reading the response.s0.1
Kotva
wt
wt
Wait Timeout
The delay between the response readings.s0.1
Kotva
mwr
mwr
Max. Wait Retry
The maximum number of retries of the response reading.-20
Kotva
stasi
stasi
Start Silent Interval
"Start silent interval" before the beginning of the transmission in RTU mode.ms50
Kotva
stosi
stosi
Stop Silent Interval
"Stop silent interval" after ending of the transmission in RTU mode.ms50

Kotva
lem
lem
Little Endian Mode

Byte order in Little-endian mode for 4-byte variables. The individual options indicate in which bytes (1-lowest, 4-highest) the individual bytes from the communication will go:

  • 2143 - first the lower word is received, then the higher word (higher byte within the word is always first)
  • 3412 - first the higher word is received, then the lower word (lower byte within the word is always first)
  • 1234 - bytes are received from lowest to highest (direct opposite of big-endian)
-2143

Kotva
bm
bm
Byte mode

Special byte mode of transmission in which the values of registers have a length of 1 byte and not 2 bytes as it is defined in Modbus protocol specification.YES/NONO
Kotva
vm
vm
Variable mode
Special variable mode of transmission in which the values of registers have variable lengths.

The setting of Variable mode:
Little endian = the lowest bytes are sent first
Big endian = the highest bytes are sent first
OFF = variable mode is switched off

Note 1: Variable and byte mode modes are incompatible and only one of them can be enabled.
Note 2: Emerson FloBoss 103 device: text strings and time stamps of 6-byte are sent always from the lowest byte.
Note 3: Variable mode is implemented only for Protocol Mode=RTU.
Note 4: A data encoding big-endian is used automatically, according to the default parameter values Byte mod=NO and Variable mode=OFF (i.e. according to MODBUS protocol specification).

OFF
Little endian
Big endian
OFF
Kotva
fd
fd
Full debug
Logging of detailed debug information about communication in the line log.YES/NONO
Kotva
pm
pm
Protocol mode
Protocol mode: RTU or ASCII.

Note: In the case of "MODBUS over TCP/IP", the parameter value is ignored and Protocol Mode=RTU is used.

RTU
ASCII
RTU
Kotva
am
am
Addressing model
Sets an address model of MODBUS protocol:
MODBUS PDU
data are addressed from 0 up to 65535.
MODBUS data Model
data are addressed from 1 up to 65536.

Note:
MODBUS PDU is a default value. If the MODBUS data Model is set, the object with the address X is addressed as X-1 in MODBUS PDU.
After you change this parameter, a restart a proper communication processof the respective communication process was required in the past (KOM binaries older than May 27, 2021).
MODBUS PDU
MODBUS data Model
MODBUS PDU
Kotva
mtcpv
mtcpv
TCP/IP protocol variant
Select a variant of the protocol in case of TCP/IP communication:
"MODBUS TCP" is a variant of communication without control checksum. Safeguarding is done by the underlying TCP protocol.
"MODBUS over TCP"
is a variant where a payload is MODBUS RTU data containing a checksum.
"MODBUS TCP"
"MODBUS over TCP"
"MODBUS TCP"
Kotva
mxr
mxr
Max. Registers
Maximum count of registers that are read by one request.-100
Kotva
mxb
mxb
Max. Bytes
Maximum count of bytes that are required by one request (only in "Byte mode").-100
Kotva
sku
sku
Skip Unconfigured
To read the values from addresses that are not configured is not allowed.

Description and example:
The requests for data, which are limited by protocol parameter "Max. Registers" or "Max. Bytes", are sent as standard. If I/O tags with addresses "Holding Registers" 1, 2, and 5 have been configured, one request reading 5 registers starting with address 1 is sent although the I/O tags with addresses 3 and 4 are not configured. It is more efficient to obtain the required data by one request than by two ones even if the unnecessary data are also read.
If the parameter "Skip Unconfigured" is set on YES, two requests are sent, the first one reads two registers from address 1 and the second one reads one register from address 5.

YES/NONO
Kotva
crl
crl
Check Receive Length
If this parameter is set to YES, then an extra check is performed when receiving a response to a read request: the length of received data is checked whether it matches the number of registers in a read request:
  • if Byte mode is on (Byte mode=YES), the length of received data must be equal to the number of registers
  • if both Byte mode and variable mode are off, the length of received data must be equal to the double of the number of registers
  • if the variable mode is on (Variable mode=little-endian or big-endian), check has not been implemented yet
This extra check is reasonable on high-latency and variable-latency lines - e.g. GPRS networks - to detect and avoid the situation when read request (#1) is repeated due to timeouts and then two responses are received, the second of which could be considered to be an answer to another read request (#2), thus causing wrong values being assigned to I/O tags addressed by this read request #2.
YES/NONO

...

Kotva
basic
basic
Basic format of I/O tag address:
Address format is [I|U|Uu|Ul|f|F|L|Ll|S|Sl|B|X|sn.|an.|An.][d|D][b][s]RdFn[-WrFn[d]].Address[.BitNr] in which:

  • First The first character defines a type of I/O tag:
    • I - Integer16 (default) - one register is read, signed
    • U - Unsigned16 - one register is read, unsigned
    • Uu - Unsigned16 - one register is read, unsigned, only the upper byte is considered processed (1st in sequence)
    • Ul - Unsigned16 - one register is read, unsigned, only the lower byte is considered processed (2nd in sequence)
    • f - Float (4 bytes = 2 registers) - two registers with Address and Address+1 are read and transmitted as big-endian (see Note).
    • F - Float (4 bytes = 2 registers) - two registers with Address and Address+1 are read and transmitted as little-endian (so-called Modicon format), (see Note)
    • L - Unsigned long (4 bytes = 2 registers) - two registers with Address and Address+1 are read, unsigned, and transmitted as big-endian (see Note)
    • Ll - Unsigned long (4 bytes = 2 registers) - two registers with Address and Address+1 are read and transmitted as little-endian, unsigned (see Note)
    • S - Signed long (4 bytes = 2 registers) - two registers with Address and Address+1 are read, signed, and transmitted as big-endian (see Note)
    • Sl - Signed long (4 bytes = 2 registers) - two registers with Address and Address+1 are read and transmitted as little-endian, signed (see Note)
    • B - Byte unsigned, only the upper 8 bits of the register value
    • X - Byte unsigned, only the lower 8 bits of the register value
    • sn. - Text string with the length of n characters, one register is one character, n registers with Address up to Address+n-1 are read
    • an. - Text string with the length of 2*n characters, one register is two ASCII characters, characters are transmitted in the same order as they appear in the string,  n registers with Address up to Address+n-1 are read
    • An. - Text string with the length of 2*n characters, one register is two ASCII characters, characters are transmitted in big-endian order (i.e. "1234" is transmitted as "2143"),  n registers with Address up to Address+n-1 are read
  • Modifier d indicates that a number is an 8-byte number (4 consecutive registers). It can be used for types L, Ll, S, Sl, F,f, and it is used for configuration of signed/unsigned 8-byte integer as well as an 8-byte float (big-endian <B8>..<B1> and little-endian <B1>..<B8> formats).
    Modifier D indicates that a number is an 8-byte number (4 consecutive registers). It can be used for types Ll, Sl, F and it is used for configuration of signed/unsigned 8-byte integer as well as an 8-byte float (little-endian format <B2><B1><B4><B3><B6><B5><B8><B7>).
    Note: when using a modifier d or D, the I/O tag must be of Analog type (Ai), because the Integer type (Ci) in D2000 is implemented as a 4-byte variable, and overflow might occur. Writing of Integer type (Co) as an 8-byte number is supported.
  • Modifier b indicates that figure is coded by BCD. It can be used for I/O tags of I, U, B, L, Ll types.
  • Modifier s indicates that a status register (Unsigned16) located on address Address is followed by a big-endian Float value located on address Address+1 .. Address+2. This indicator is used for type f and it is implemented for calorimeter Endress+Hauser RMS621. The following table shows the values of the status register and their mapping to D2000 attributes.

    Status registerD2000 attributes
    0: Invalid valueWeak
    1: Measured value validValid
    2: Overflow warning
    3: Overflow error
    4: Underflow warning
    5: Underflow error
    6: Saturated steam alarm
    7: Error in differential pressure calculation
    8: Wrong medium for DP calculation
    9: Wrong value range - DP calculation inaccurate
    10: Differential pressure - general error
    11: Range overshoot (Tsat > 350 etc.) on
    12: Change in state of aggregation
    26 : Differential pressure --> general error
    99: No measured value is assigned to the register in the setup of the ModBus
    Weak


  • Parameter RdFn is a function of the Modbus protocol for a data reading. The following functions are implemented:
    • 1 - Read Coils: binary status reading
    • 2 - Read Discrete Inputs: binary input reading
    • 3 - Read Holding Registers: status register reading (Integer16/Unsigned16 and Float32 - reads two successive registers)
    • 4 - Read Input Registers: input register reading (Integer16/Unsigned16 and Float32 - reads two successive registers)
    • 0 - A value is not read, it is only written. The function for writing (WrFn) must be set.
  • Parameter WrFn is the function of the Modbus protocol for data writing. The following functions are implemented:
    • 5 - Write Single Coil: binary status writing (default for Read Coils)
    • 6 - Write Single Register: status register writing (default for Read Holding Registers)
    • 16 - Write Multiple registers: multiple registers writing, it must be used when 2-register type is written (e.g. Float, Unsigned long, etc.).
      Note: function can be used to write more than two registers at once if a text string is used. Example:
      if we have an I/O tag with address a3.0-16.#8A00 (i.e. text string covering 3 registers, having length of 6 characters) and we write a string '123456', then hexadecimal values 0x3132, 0x3334 and 0x3536 (ASCII code for '1' is 0x31, for '2' is 0x32 etc) will be written to registers 0x8A00, 0x8A01 and 0x8A02.
    • 22 - Mask Write Register:  write affects only the value of the particular bit BitNr of the status register. It is usable only for Do value types with the address parameter BitNr.
  • Parameter d activates the function "delayed write". Sending of the value is delayed until the request to write the value of the object without parameter d comes. All accumulated requests waiting to be written are sent. If the function WrFn is set to "Write Multiple Registers", the values are sent in one packet.
  • Parameter Address is a 2-byte address of the register (0-65536). See also the protocol parameter Addressing model.
    Note: address can be specified as a hexadecimal number using a number sign (#), e.g. #50CE
  • Parameter BitNr is a number of bit's position in a word. The values 0-7 are allowed to be used for binary statuses and inputs, values 0-15 are allowed to be used for reading of bit from 16-bit status or input registers.

...

Info
titleBlog

You can read blogs about the Modbus protocol

...