Porovnávané verzie

Kľúč

  • Tento riadok sa pridal
  • Riadok je odstránený.
  • Formátovanie sa zmenilo.

...

Full nameMeaningUnitDefault value
Kotva
armp
armp
Asymetric Redundancy Mode Periodicity
The parameter can be used for a TCP Redundant line with defined backup servers (see the parameters AS1, AP1, BS1, BP1 ..). Non-zero value of ARMP parameter means that if this number of ASDUs is received (after a successful reconnect), both connection are checked whether they're not going through the same network (IP a ports defined in the line settings or ASx:APx and BSx:BPx).If they do, the connection to the standby server (see the parameter Asymetric Redundancy Mode Slave Detection) will be closed and an attempt to establish a connection through another network will be made. If unsuccessful, the following IP address will be tried (i.e. Alternate Server 1, Alternate Server 2, line IP, Alternate Server 1 etc).
Note: When the parameter Asymetric Redundancy Mode Periodicity is enabled, the second connection is established to "B-Alternate Server 1" : "B-Alternate Port 1" and not to the IP address and port defined for the line after running the process D2000 KOM (so that it wouldn't be immediately closed).
-0
Kotva
armsd
armsd
Asymetric Redundancy Mode Slave Detection
Detection method of standby server for Asymetric Redundancy Mode Periodicity:
  • 0 - no detection: the first connection, that detects it is working via the same network, is to be disconnected
  • 1 - if ASDU contains the least significant bit of the 3rd Control Field byte set to 1
  • 2 - if ASDU in CauseOfTransmission contains a bit set to 8
-0
Kotva
an
an
Alternate Server 1/
Alternate Port 1/
Alternate Server 2/
Alternate Port 2/
Extension for redundant systems: beside the IP address defined in the configuration of the Line, it is possible to define 2 alternative IP addresses. In case of connection failure, the process D2000 KOM is attempting to connect to the next address in the list.
Note 1: All IP addresses and ports must be defined stepwise for one station (i.e. at first "Alternate Server 1", "Alternate Port 1" and then "Alternate Server 2", "Alternate Port 2").
Note 2: These parameters are obsolete, since it's possible to define several IP addresses in the configuration of the line (separated by comma or semicolon, e.g. 10.0.0.1;10.0.0.2).
--
Kotva
bn
bn
B-Alternate Server 1/
B-Alternate Port 1/
B-Alternate Server 2/
B-Alternate Port 2/
Can be used when the protocol IEC 870-5-104 is configured for a TCP redundant line. The meaning of the parameters is the same as for primary connection, but they are valid for the backup connection.
Note 1: All IP addresses must be defined stepwise for one station (i.e. at first "Alternate Server 1", "Alternate Port 1" and then "Alternate Server 2", "Alternate Port 2").
Note 2: These parameters are obsolete, since it's possible to define several IP addresses in the configuration of the line (separated by comma or semicolon, e.g. 10.0.0.1;10.0.0.2).
--
Kotva
cmdc
cmdc
Command Confirm
Confirmation of control ASDU.
If Command Confirm=0, the process D2000 KOM is not waiting for confirmation of control ASDU from the partner station using backward sending ASDU with other CauseOfTransmission, ASDU is consider to be confirmed, when there is received a packet containing corresponding ReceiveSequenceNumber.
If Command Confirm=1, the process D2000 KOM is waiting for confirmation with CauseOfTransmission=7 (Activation Confirmation).
If Command Confirm=2, the process D2000 KOM is waiting for confirmation with CauseOfTransmission=10 (Activation Termination).
If Command Confirm=3, the process D2000 KOM waiting for confirmation with CauseOfTransmission=7 or 10 (if both of them are received, only the first of them is taken into account).
Having received corresponding confirmation means that writing is finished (the Transient attribute of written value is evaluated and the "Wait Timeout Tn" timeout stops elapsing).
If there is received confirmation with other CauseOfTransmission, as the process D2000 KOM expects for, it will be ignored.
Writing is successful, if the received ASDU contains the P/N bit set to 0. Otherwise, writing is unsuccessful.
Value from received ASDU is backwardly written into particular I/O tag and is sent to the system. E.g. if an ASDU of type 50 (short floating point) with the value of 1200.0 is sent and the partner station sends an ASDU of type 50 as reply, P/N bit=0, value of 999.0 (e.g. due to physical limitations of the given parameter) as a response, then the value is to be send by process D2000 KOM to the D2000 system.
-1
Kotva
d2cls
d2cls
The parameters are intended for configuration of communication station for communication between two D2000 systems with using ASDU 252 - D2000 Unival (Ipesoft's implementation). more ...
Kotva
dbgi
dbgi
Debug Input
A mask for debug levels of input data. The meaning of bits is as follows:
  • 1.bit - displays a number of incoming values during General Interrogation
  • 2.bit - displays all incoming values
  • 3.bit - balanced mode: requesting Interrogation command was received
-0
Kotva
dbgo
dbgo
Debug Output
A mask for debug levels of output data. The meaning of bits is as follows:
  • 1.bit - balanced mode: displays a number of outgoing values during General Interrogation
  • 2.bit - displays all outgoing values
-0
Kotva
eoi
eoi
End of initialization
Extension for ABB MicroScada: If End of initialization=1, having received ASDU 70 (End of initialisation) resends Interrogation Command and/or Counter Interrogation Command.-0
Kotva
fmt
fmt
Force Master Time
If Force Master Time=True, then the process D2000 KOM will accept ASDU 103 (Clock synchronisation command) with CauseOfTransmission=6 [Activation] or 3 [Spontaneous] from the server and saves the time difference between server's time and its time. If CauseOfTransmission=6, it replies with CauseOfTransmission=7 [Activation Confirmation].
Then time of all values, which are received with timestamps, is decreased by this difference, i.e. a correction to the time of D2000 is made.
The parameter allows to solve the problem when some values from server are received with the timestamps and others without timestamps and times from D2000 and server differ. In this case without parameter Force Master Time=True the values received without timestamps are specified by D2000 time and the values with the timestamps are specified by the server time. With parameter Force Master Time=True the time, sent by server, is corrected to D2000 time using the time difference, which is computed from the received ASDU 103 (Clock synchronisation command).
-False
Kotva
fst
fst
Force Slave Time
Extension for ABB MicroScada: If Force Slave Time=True, then the process D2000 KOM will accept ASDU 103 (Clock synchronisation command) with CauseOfTransmission=6 [Activation] or 3 [Spontaneous] from the server and saves the time difference between server time and its time. If CauseOfTransmission=6, it replies with CauseOfTransmission=7 [Activation Confirmation].
Then all values, which are received with no timestamps, are to be marked by the current time plus time difference (if the station is not configured to use the communication computer time).
The parameter Force Slave Time allows to solve the problem, that having sent ASDU 100 or 101 there are sent ABB MicroScada values with no timestamps, but they are sent with the time stamps during the communication - problems can occur, when there are not synchronized the times of the MicroScada and the D2000 system.
-False
Kotva
icci
icci
GI Send New
If GI Send New=True, then the process D2000 KOM after receiving the command General Interrogation sends also values with more recent times than is the time when the command is received. The value of the parameter GI Send New must be True to send values with more recent times using the command General Interrogation.-False
Kotva
icf3
icf3
Ignore Control Field 3 bit 0
Determines behaviour, when ASDU contains Control Field with lowest bit (1) of the 3rd byte set.
  • if Ignore Control Field 3 bit 0=False (default), ASDU content is to be processed
  • if Ignore Control Field 3 bit 0=True, ASDU content is to be ignored
The feature can be used when creating a redundant TCP connection (TCP Redundant line + IEC 870-5-104 protocol). Hot server should send ASDU with the lowest bit of the 3rd Control Field byte set to 0, standby server should send ASDU with the lowest bit of the 3rd Control Field byte set to 1.
-False
Kotva
iii
iii
Ignore Invalids on Interrogation
Balanced mode: if this parameter is set on a station, the process D2000 KOM will not send as a reply for ASDU 100 and 101 (Interrogation / Counter interrogation command) values of I/O tags which are Invalid or Unknown. Parameter can be used e.g. when controlling, if sending Invalid values causes breakdown of control.-False
Kotva
it
it
Ignore Tests
Determines behaviour, when ASDU contains bit 8 (test) set in CauseOfTransmission.
  • if Ignore Tests=0 (default), ASDU content is to be processed
  • if Ignore Tests=1, ASDU content is to be ignored
  • if Ignore Tests=2, weak attribute is to be set
The feature can be used for creating a redundant TCP connection (TCP Redundant line + IEC 870-5-104 protocol). Hot server should send ASDU with the Test bit=0, standby server should send ASDU with the Test bit=1.
-0
Kotva
iua
iua
Ignore Unknown Addresses
If Ignore Unknown Addresses=TRUE, the process D2000 KOM will not show an error on its console or write it into log files in case that incoming value has the address not matching any of the addresses of I/O tags defined in the D2000 system.-False
Kotva
ii
ii
Implicit Interrogation
Balanced mode: After connecting to the IEC104 server, the process D2000 KOM sends the values of all variables without waiting for ASDU 100 or 101 [Interrogation/Counter Interrogation Command] requests.-False
Kotva
icci
icci
Interrogation Covers Counter Interrogation
Balanced mode: As a reply to Interrogation, also values of I/O tags configured as ASDU 15, 16, 37 (Integrated Totals) are sent. (They are normally requested by ASDU 101 [Counter Interrogation].)-False
Kotva
iwot
iwot
Interrogation WithOut Timestamps
If Interrogation WithOut Timestamps=True, then values sent as a response to ASDU 100 [Interrogation Command] in balanced mode will be sent as ASDUs without timestamps.
For example instead of ASDU 2 (Single-point information with time tag) or ASDU 30 (Single-point information with time tag CP56Time2a) ASDU 1 (Single-point information) will be sent.
This behaviour is suitable in the situation when the values have been invalidated as a result of communication error and after the communication is reestablished the values come with old timestamps which causes problems in archive (if the values change only rarely, calculated archives depending on them will be also invalid till a new value arrives).
-False

Kotva
ibb
ibb
Interrogation By Broadcast Address

If the parameter is True, then the process D2000 KOM sends ASDU 100 [Interrogation Command] resp. ASDU 101 [Counter Interrogation Command] during connection initialisation to a single station with ASDU address 0xFFFF (decimally 65535). Otherwise, it sends these ASDUs to all stations on the line that have input I/O tags and are not turned off. The order of ASDU 101 and ASDU 101 and whether they are sent at all depends on the "Order of IC" and "Order of Counter IC" parameters.

-False

Kotva
k
k
K

Sending window size i.e. number of I-frames sent by the process D2000 KOM without receiving a confirmation (S-frame or I-frame). According to the standard, the default value is 12.-12
Kotva
lh
lh
LFC History

The parameter may be used to read archive values for communication with LFC terminals or other devices that support ASDU 250 defined by Ipesoft.

Unlike the primary use of ASDU 250, LFC terminal can only transmit one value for interval begin time, while the end time is ignored. The value is not to be received as ASDU 251 but as one of the standard ASDU with time stamp. What is more, the values (with the same time stamp) of other tags may be received along with the value of required tag. LFC terminal does not ASDU 250 (with CauseOfTransmission=7, 10) as part of the response and the process D2000 KOM treats the reading as done as soon as gets the value of the required IO/ tag. Reading archive values is considered as unsuccessful but connection to LFC terminal is not closed until the value is not received in the time defined by the parameter Wait Timeout T1.

If the values of other I/O tags are received along with the value of required I/O tag, they must be received before the value of required tag is received, otherwise they are not considered as archive values (because reading is consider to be done after the value of required I/O tag is done).
Example: After the request for the values of I/O tags with the addresses of 1,2..16, LFC terminal always sends the values of all the tags in the order of 1,2..16, therefore we must require for the value of the I/O tag with the address of 16.

If the parameter is not defined or LFC History=0, reading archive data are defined by Ipesoft (D2000 IEC104 Server partner is assumed).

If LFC History=1, then the value the time of which belongs into the time interval specified by the action GETOLDVAL (and transferred through ASDU 250) is considered to be historical one (it is to be stored in the archive and not I/O tag, etc.).

If LFC History=2 then see the description above for LFC History=1 except if the time of received value is later than the current value of the I/O tag, the received value is to be sent into the process D2000 Server as new one and not as historical one.

Note: When reading archive data of LFC terminal, the action GETOLDVAL may not contain station name (the parameter statIdent) but the I/O tag name. If the action contains a station name, ASDU 250 is to be sent for one I/O tag only.

-0
Kotva
mtd
mtd
Maximum Time Difference
Maximum acceptable time difference (in hours) between the time of received data and the time of process D2000 KOM. If partner station sends a value with a timestamp older or latter then MDT hours, the value is to be ignored and an error report is to be generated into the line's trace file. If the parameter Maximum Time Difference is a negative value (e.g. Maximum Time Difference=-5), there is used its absolute value and the system tag SystemError is generated as well. If the parameter's value is zero, the time difference is not to be checked.hrs0
Kotva
nf
nf
No Flags
If the parameter is True, then the status bit of incoming ASDUs is ignored and not saved into the flags FA...FH. Flags of output I/O tags are also ignored and they not set the status bit.-False
Kotva
oic
oic
Order of IC
Order of sending ASDU 100 [Interrogation Command] during connection initialization. If OIC<OCIC, ASDU 100 will be send before ASDU 101. If OIC=0, ASDU 100 will not be sent. The parameter can be set extra for each station.-1
Kotva
ocic
ocic
Order of Counter IC
Order of sending ASDU 101 [Counter Interrogation Command] during connection initialization. If Order of IC < Order of Counter IC, ASDU 101 will be sent before ASDU 100. If Order of IC=0, ASDU 101 will not be sent. The parameter can be set extra for each station.-2
Kotva
pcnt
pcnt
Ping Count
Number of repetitions, after which the IP address not responding to ping is known as non-functional.
See the parameter Ping TimeOut.
-3
Kotva
pto
pto
Ping TimeOut
If the parameter is other than zero, then defines the timeout (in milliseconds) of server response for ping (ICMP echo) packet. In the background, the process D2000 KOM sends ping packets to all defined IPs - Line IP address and Alternate Server 1, Alternate Server 2, B-Alternate Server 1, B-Alternate Server 2. If some of the addresses does not response for Ping Count-times, it is designated as non-functional. If the line is connected to this IP address, the connection is terminated. New connection is established just to a functional IP address. If the parameter Ping TimeOut=0, sending ping packet to IP addresses is disabled.ms0
Kotva
psd
psd
Post start delay
A delay between receiving StartDT Con response and sending Interrogation Command and/or Counter Interrogation Command in the initialisation phase.ms0
Kotva
prd
prd
Pre Reconnect Delay
A delay before connecting and reconnecting (after starting the process D2000 KOM and after communication break-up).ms0
Kotva
ssn
ssn
Send sequence number
Initial Send sequence number. According to the standard, having established the connection the Send sequence number is set to 0, other than zero could be appropriate e.g. for testing.-0
Kotva
srmin
srmin
Smart Redundancy Minimum
Number of values that must be identical in the Smart Redundancy Minimum mode to consider the connections synchronized. The following parameters are taken into account:
  • I/O tag and station addresses
  • value
  • time
  • flags (FA..FH)
-5
Kotva
srm
srm
Smart Redundancy Mode
Can be used for TCP Redundant line as alternative to Ignore Tests=1 or Ignore Control Field 3 bit 0=1. The process D2000 KOM assumes that the identical values go via the both connection of the TCP Redundant line in the same order. The process D2000 KOM is attempting to synchronize the connections. If the D2000 KOM process receives a number of identical values defined by the parameter Smart Redundancy Minimum, data are synchronized. After synchronisation is done, the value that comes earlier is taken into account, the same value via the other connection is ignored.
When the TCP connection is broken or two different values comes, the synchronisation is broken.
Compared to detection hot/standby partner by means of Ignore Tests/Ignore Control Field 3 bit 0, an advantage is that after communication failure with the hot server, there is no data loss, because the communication is still working with the standby partner and attempting to recover the connection with the hot server.
Having recovered the connection (if the second connection is working), there are ignored the values which are acquired by the command General Interrogation.
-False
Kotva
sko
sko
Standby Keep Open
If True, after changing the status of process D2000 Server (the process D2000 KOM is connected to) from Hot into Standby state (redundant system), connection with the server will not be closed.-False
Kotva
sscf3
sscf3
Standby Set Control Field
If TRUE, after changing the status of process D2000 Server (the process D2000 KOM is connected to) from Hot to Standby state (in the redundant system), the lowest bit of the 3rd Control Field byte of information APDUs (APDU containing data or commands) will be set to 1 instead of the standard value of 0. The behaviour does not strictly follow the standard and we recommend you to use the parameter Standby Set Test Bit instead of this parameter if it is possible.-False
Kotva
sstb
sstb
Standby Set Test Bit
If True, the Cause Of Transmission will have a Test bit set if the process D2000 KOM is connected to Standby server (redundant system) or is a passive instance.-False
Kotva
swv
swv
Standby Write Values
If True, after changing the status of process D2000 Server (the process D2000 KOM is connected to) from Hot into Standby state (redundant system), there will be sent new values.-False
Kotva
st_ce
st_ce
Station Communication Error
Number of unsuccessful connection attempts after the communication failure after which the station status is changed to St_CommErr. For redundant lines, the communication must be either failed on both TCP connections or only a TCP connection to standby-server must be established (see the parameters Ignore Control Field 3 bit 0 and Ignore Tests), i.e. data from the server are ignored.-2
Kotva
st_he
st_he
Station Hard Error
The status of all stations on line is changed into the state St_HardErr if the following conditions are met:
  • number of unsuccessful connection attempts reaches the value of ST_HE or higher,
  • an attempt to restore the communication lasts at least the time defined by the parameter Time filter (maximum value of all stations on line is taken into account),
  • for redundant lines, the communication must be either failed for both TCP connections or there is a working TCP connection only to a standby-server (see the parameters Ignore Control Field 3 bit 0 and Ignore Tests), i.e. the data from the server are ignored.
-5
Kotva
stdci
stdci
Stop Data Confirm Ignored
Workaround due to MetsoDNA server error: after connecting to IEC870-5-104 server from the firm Metso, the server sends a U-frame STOPDTcon (thereby confirms interruption in sending data). If the parameter Stop Data Confirm Ignored is True, this frame will be ignored and the communication will continue. Without the parameter Stop Data Confirm Ignored, the connection will be aborted.-False
Kotva
srcs
srcs
Strict Redundancy Connection Signalisation
Determines behaviour, when the protocol is used for TCP Redundant line
  • if Strict Redundancy Connection Signalisation=False, the line is in order (TRUE), if at least 1 connection is working
  • if Strict Redundancy Connection Signalisation=True, the line is in error state (FALSE), if both connections are working
-False
Kotva
tki
tki
Tcp Keep Init
The parameter is implemented for use on OpenVMS platforms only. If it is other than zero, then defines the timeout (in seconds) for opening a new connection to server. For OpenVMS, the default value is 75 seconds, for Windows it is 20 seconds. When timeout expires, connect procedure returns error.-0
Kotva
tnd
tnd
Tcp No Delay
Setting Tcp No Delay parameter causes low level socket option TCP_NODELAY being set, thus turning off default packet coalesce feature.-False
Kotva
w
w
W
Number of received I-frames, after which the process D2000 KOM sends a S-frame confirmation. According to the standard, the default value is 8. The relation W < K must be true, the standard recommends W = 2/3 * K.-8
Kotva
wt1
wt1
Wait Timeout T1
Timeout for receiving the confirmation of a sent I-frame (either confirmation within the I-frame or the S-frame itself) or a U-frame. If the process D2000 KOM does not get the confirmation in the time Wait Timeout T1, it closes the TCP connection. According to the standard, the Wait Timeout T1 default value is 15000 ms.ms15 000
Kotva
wt2
wt2
Wait Timeout T2
Timeout for sending the confirmation of a received I-frame. Wait Timeout T2 < Wait Timeout T2. If other I-frame (which confirms the received I-frame) is not sent in the time Wait Timeout T2 since the I-frame was received, so the process D2000 KOM sends a S-frame confirming the received I-frame to the partner. According to the standard, the Wait Timeout T2 default value is 10000 ms.ms10 000
Kotva
wt3
wt3
Wait Timeout T3
Timeout for sending test frames (U-frame TEST ACT). If no data are sent in any direction for a long time, an U-frame TEST ACT will be sent to the process D2000 KOM after expiration of the Wait Timeout T3 time and there is expected (in the Wait Timeout T1 time after sending) receiving a U-frame TEST CON. If the Wait Timeout T3 on the partner side is set to a lower value, it sends the test frames and the process D2000 KOM reply them. According to the standard, the Wait Timeout T2 default value is 20000 ms.
Setting the value to 0 disables sending test frames.
ms20 000
Kotva
wtn
wtn
Wait Timeout No answer
Timeout for receiving the confirmation of a sent value. Receiving e.g. S-frame with RSN (Receive Sequence Number) confirming, that the other party received previous I-frame doesn't mean, that the I-frame was processed. In the Wait Timeout Tn, the process D2000 KOM waits for receiving the response (e.g. after sending ASDU with TypeIdentificator=45 [Single Command] with CauseOfTransmission=6 [Activation] there is expected receiving Single Command with CauseOfTransmission=7 [Activation Confirmation].
After the expiration of the Wait Timeout Tn, the process D2000 KOM closes the TCP connection.
ms60 000

...