
Parametrization of SQL commands and expression
Parameterization of SQL commands and expressions
Parameterization of SQL commands and expressions means symbolic specification of values in SQL commands and expressions and later filling-in the
parameters by actual values.
An example of parameterized expression: " Id= #PAR# AND Name LIKE #PAR# "
An example of parameterized command: "SELECT Name, Surname FROM Persons WHERE Id= #PAR# AND Name LIKE #PAR# "

There are 3 ways of parameter specification usable by selected actions executed by the process :D2000 DBManager

By character "?"
Convention used by ODBC interface (works for ODBC version of the process DBManager only). Every parameter is specified by a single question
mark.
Example: " Id > ? AND Name = ? "
Note: This parameterized SQL expression won't work for OCI version of the process DBManager.
By expression ":name"
Convention used by OCI interface (works for OCI version of the process DBManager only). Every parameter is specified by a colon and a name.
Example: " Id > :par1 AND Name = :par2 "
Note 1: This parameterized SQL expression won't work for ODBC version of the process DBManager.
Note 2: This way of parameterization supports multiple re-using of the same parameter (e.g.) in SQL command or expression::par1
"SELECT Name, Surname FROM Person WHERE Name= :par1 OR Surname = :par1 OR BirthDate > :par2 "
By expression "#PAR#"
Internal notation for the process DbManager. ODBC version of the process DBManager replaces all expressions by a character #PAR# ?
(converts the notation to ODBC convention) before preparing the statement, OCI version of the process DBManager replaces all expressions #PA

 by expressions , etc. (converts the notation to OCI convention).R# :01 :02
This way of parameter specification is universal and SQL commands and expressions using it don't have to be changed when moving between
ODBC and OCI versions of the process DBManager.

Parameterization can be used in SQL expression by a selected set of database-oriented actions, specifically the actions:

DB(S)_DELETE
DB(S)_READ
DB(S)_UPDATE

If the SQL expression is parameterized, the action must use the keyword followed by one of these choices:BINDIN

list of objects, constants or ,local variables
reference to a row of of type or to a row of ,local variable Record structured variable

The values of parameters will be filled-in according to the values specified after the keyword .BINDIN

Parameterization is supported also by the action , but in this case the list of parameters' values is not part of the action. Using the keyword SQL_PREPARE
 (instead of) specifies, that the SQL command is parameterized and consequently the values of the parameters must be filled-in by calling BINDOUT BIND

the action . The advantage is that to obtain results corresponding to different values of the parameters the action doesn't SQL_BINDIN SQL_PREPARE
have to be called again - it is sufficient to repeat the action to fill-in new values of the parameters and consequently the action SQL_BINDIN SQL_FETCH
can be used to obtain results.

The meaning of parameterization is to speed up and make easier the work of SQL engine. The processing of SQL command includes its parsing and
compilation. If the same SQL command is reused, the SQL engine can recycle already parsed and compiled command. E.g. by the means of
parameterization the commands
"SELECT Name FROM Person WHERE Id=1"
"SELECT Name FROM Person WHERE Id=5"
"SELECT Name FROM Person WHERE Id=100"
can be replaced by a single command
"SELECT Name FROM Person WHERE Id= #PAR#"
and instead of three SQL commands the database engine will parse and compile only one SQL command (and during second and further executions it can
be recycled).

If the parameterization is used in the action and parameters' values are set by multiple calls to the action , the parsing and SQL_PREPARE SQL_BINDIN
compilation of SQL command is guaranteed to be performed only once (during the call to).SQL_PREPARE
If the parameterization is used in the actions , or , it is recommended to modify the database parameters (e.DB(S)_DELETE DB(S)_READ DB(S)_UPDATE
g. Oracle:), so that the SQL engine caches sufficient number of compiled commands (cursors), so that they stay in the cursor session_cached_cursors
cache between calls to DB(S)_* actions.

Related topics:
DB_DELETE
DB_READ
DB_UPDATE

SQL_PREPARE
SQL_BINDIN
SQL_FETCH
SQL_FREE

All database actions

https://doc.ipesoft.com/display/D2DOCV12EN/D2000+DBManager
https://doc.ipesoft.com/display/D2DOCV12EN/DB_DELETE
https://doc.ipesoft.com/display/D2DOCV12EN/DB_READ
https://doc.ipesoft.com/display/D2DOCV12EN/DB_UPDATE
https://doc.ipesoft.com/pages/viewpage.action?pageId=17281673
https://doc.ipesoft.com/display/D2DOCV12EN/Terms#Terms-identifikator_riadku_struktury
https://doc.ipesoft.com/pages/viewpage.action?pageId=17281673
https://doc.ipesoft.com/display/D2DOCV12EN/Structured+Variable
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_PREPARE
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_BINDIN
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_PREPARE
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_BINDIN
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_FETCH
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_PREPARE
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_BINDIN
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_PREPARE
https://doc.ipesoft.com/display/D2DOCV12EN/DB_DELETE
https://doc.ipesoft.com/display/D2DOCV12EN/DB_READ
https://doc.ipesoft.com/display/D2DOCV12EN/DB_UPDATE
https://doc.ipesoft.com/display/D2DOCV12EN/DB_DELETE
https://doc.ipesoft.com/display/D2DOCV12EN/DB_READ
https://doc.ipesoft.com/display/D2DOCV12EN/DB_UPDATE
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_PREPARE
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_BINDIN
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_FETCH
https://doc.ipesoft.com/display/D2DOCV12EN/SQL_FREE
https://doc.ipesoft.com/display/D2DOCV12EN/Script+Actions#ScriptActions-akcie_databaza

	Parametrization of SQL commands and expression

